
What have we here? a man or a fish? dead
or alive? A fish: he smells like a fish; a very
ancient and fish-like smell; a kind of not of
the newest Poor-John. A strange fish!

Shakespeare, The Tempest, Act II, Scene
II, line 22; spoken by Trinculo

CATEGORIZATION IS CENTRAL TO COGNITION

Beachcombers categorize flotsam as man or fish.
Players of 20 questions categorize things as animal,
vegetable or mineral. Guards categorize approach-
ers as friend or foe. Bystanders categorize flying
objects: ‘Look, up in the sky! It’s a bird; it’s a plane!
No, it’s Superman!’ Categorization permeates cog-
nition in myriad protean variations. Our categorization
of an object we encounter determines what we do
with it. If it is an old dead fish, we walk away in dis-
gust, but if it is just an unkempt rascally scoundrel,
we … Well, at least in some cases our categorization
of an object affects our reaction to it.

The overriding purpose of categorization is infer-
ence of unseen attributes, especially for novel stim-
uli. Thus, we classify a handwritten squiggle as the
letter ‘A’ because we then infer its sound and mean-
ing in the context of other letters. The sound and
meaning are not visible in the squiggle itself. We
classify animals as tigers or zebras in order to infer
unseen attributes such as being threatening or
innocuous. The potential threat is not explicit in the
visible features of the animal. Classification takes
us from the information given in the stimulus to pre-
viously learned, associated information. The classi-
fication is itself an inference of an unseen attribute.

As anyone knows who has tried to read messy
handwriting, the classification of squiggles into letter
categories is often not at all obvious. Occasionally
also we encounter unusual animals, or flying objects,
or flotsam, that are difficult to identify. In principle,
any classification is a non-trivial inference of an
unseen attribute.

Induction of invisible features is called catego-
rization when it applies to novel stimuli that are not
exact replicas of the stimuli experienced during
learning. That is, categorization depends on gener-
alizing from particular learned instances to novel
situations. Categorization is sometimes defined
merely as dividing a set of items into subsets.
Typically, however, such a division is only of inter-
est to the extent that novel items are inferred to be
in one subset or another. If learned knowledge con-
sisted merely of isolated facts with no generaliza-
tion, then the knowledge would be useless except
for the unlikely exact recurrence of the learned sit-
uation. For example, learning that a 4 cm tall,
round-capped, beige-colored mushroom is edible
would not generalize to 3 cm tall mushrooms. This
failure to generalize could result in a starved cate-
gorizer. On the other hand, if generalization is too
liberal, then complementary problems can arise. For
example, inferring that a flat-capped, 4 cm tall,
beige mushroom is edible might result in a poisoned
categorizer. Thus, generalization from learned cases
must be appropriately tuned, not too narrow and not
too broad.

Generalization is not the only goal when learning
categories. Just as important is retaining previously
learned knowledge while quickly acquiring new
knowledge. For example, after having learned about
edible mushrooms, it could prove catastrophic if
learning about poisonous mushrooms required
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dozens of exposures. It could also be disastrous if
the learning about poisonous mushrooms erased
still-valid knowledge about edible mushrooms
(French, 1999; Kruschke, 1993; McCloskey &
Cohen, 1989; Mirman & Spivey, 2001; Ratcliff,
1990). Yet edible and poisonous mushrooms share
many prominent features, so learning that they
should be treated dramatically differently, while
also generalizing appropriately to other mush-
rooms, could be very challenging.

Because classification, i.e. naming the category
label of an object, is a paramount example of infer-
ence of an unseen attribute, many laboratory exper-
iments in categorization examine people’s ability to
learn novel classification labels. In a typical exper-
iment, a participant is shown a stimulus and asked
to guess which of several category labels is correct.
After his or her guess, the correct label is displayed,
and the participant studies the stimulus and correct
label for a few seconds before moving on to the
next case. After many cases (typically but not
always with repetition of individual cases), the par-
ticipant learns the correct category labels of the
stimuli. The experiment might then test the
learner’s generalization with novel stimuli, or his or
her ability to learn new categorizations.

For the cognitive scientist, the key questions then
are the following: What has the participant learned
and how? What sort of representation best describes
the learner’s knowledge? What sort of processes best
describe the learning and classifying activities?
Answers to these questions can be constrained by data
from the learned items, from generalization to novel
items, from learning of new categories, from infer-
ence of features from category labels (e.g. Anderson,
Ross, & Chin-Parker, 2002; Anderson & Fincham,
1996; Thomas, 1998; Yamauchi & Markman, 2000a,
2000b) and from other types of information.

Category learning is critically important because
it underlies essentially all cognitive activities, yet it
is very difficult because learned categories must
generalize appropriately, learning must occur
quickly, and new learning must not overwrite pre-
vious knowledge. Moreover, categorization occurs
on different dimensions and at different levels of
abstraction simultaneously. For example, a cardinal
(i.e. the bird) can evoke the color category red or
the part category feather or the object category
animal, and so on. Within these dimensions there
are levels of abstraction, such as scarlet, red or
warm within the ‘color’ dimension, or cardinal, bird
or animal within the ‘object’ dimension.

VARIETIES OF THEORIES OF CATEGORIZATION

Theories of categorization vary on three aspects.
Table 7.1 shows theories that instantiate each of the
combinations of the three dimensions. First, the
theory specifies what is explicitly represented about
the category. Some theories assert that the contents
within each category are explicitly specified whereas
other theories assert that the boundaries between cat-
egories are explicitly specified. For example, the cat-
egory ‘skyscraper’ might be described by a boundary
that separates it from ‘low-rise’, as follows: if
the ratio of height to width is greater than 1.62 (the
golden ratio), then the building is a skyscraper. The
specific ratio of 1.62 determines the boundary in
height/width space that separates skyscrapers from
low-rises. Alternatively, the skyscraper and low-rise
categories might be specified by their contents, e.g. if
a building is more similar to Philip Johnson’s AT&T
Headquarters (now the Sony Building) than to Frank
Lloyd Wright’s Taliesin, then it is a skyscraper.1
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TABLE 7.1 Examples of categorization models that instantiate various options for
representation and matching processes

Matching process

Representation Graded Similarity Strict Match/Mismatch

Content, piecemeal (A) Context model (Medin & Schaffer, (B) Exemplar subsystem of Smith and 
1978); Generalized context model Minda (2000); Sparse Distributed Memory
(Nosofsky, 1986); ALCOVE/RASHNL (Kanerva, 1988); discrete dim. RULEX
(Kruschke, 1992; Kruschke & (Nosofsky, Palmeri, & McKinley, 1994);
Johansen, 1999); rational model disjunctive featural rules (Bourne, 1970;
(Anderson, 1991). Levine, 1975).

Content, global (C) Modal features (Reed, 1972); (D) Conjunctive featural rules (Bourne,
central tendency (Smith & Minda, 1970; Levine, 1975).
2000); component-cue network
(Gluck & Bower, 1988); ADIT/EXIT
(Kruschke, 1996a, 2001a).

Boundary, piecemeal (E) ATRIUM (Erickson & Kruschke, (F) Continuous dim. RULEX (Nosofsky &
1998, 2002). Palmeri, 1998); COVIS (Ashby et al., 1998).

Boundary, global (G) PRAS (Vandierendonck, 1995). (H) Quadratic bound (Ashby, Waldron,
Lee, & Berkman, 2001).
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Second, for either type of representation, the
contents or boundary can be specified by a global
summary or by piecemeal components. For exam-
ple, the two descriptions of skyscrapers given above
were global summaries, insofar as a single condi-
tion defined the boundary or the content of each cat-
egory. By contrast, a piecemeal definition of a
boundary might be the following: a building is a
skyscraper if it is greater than 20 stories tall or if it
is taller than 7 stories and less than 100 feet wide. A
piecemeal definition of content might be the fol-
lowing: a building is a skyscraper if it is more like
the Sears Tower or the John Hancock Building than
the O’Hare Airport Terminal or Navy Pier.

Third, whatever type of representation is used for
the categories, it must be compared with the incom-
ing item that is to be categorized. This comparison
process can yield a strict match versus mismatch, or
a degree of graded similarity. For example, the
height/width ratio to define skyscraper is strict, but
the content definition (‘it’s like the Sears Tower’)
uses graded similarity.

In the remainder of this chapter, a few combina-
tions of representation and matching process will be
described in detail. Notice that the matching
processes are distinct from learning processes.
Learning is the process that actually generates the
representations. Learning will also be discussed en
route.

The three dimensions of categorization shown in
Table 7.1 were described intuitively in the previous
paragraphs. Upon further reflection, however, the
dimensions are subtle and demand more careful
clarification. Perhaps the clearest distinction is
between content and boundary. A representation of
content specifies what is in the category, but the
extent of the category might be vague. A represen-
tation of boundary specifies exactly what the limit
of the category is, and any item within that limit is
a full member of the category. The only situation in
which the distinction between content and bound-
ary breaks down is when the stimulus attributes are
nominal features. In this situation a specification of
the category’s features is tantamount to a specifi-
cation of the boundary around the category,
because the features themselves are assumed to be
sharply bounded categories. For example, if we
define a bachelor as a human who is male, unmar-
ried and eligible, then we have specified a descrip-
tion of the content of the category. But because
the attribute ‘male’ lies on a dichotomous dimen-
sion that has a sharp, genetically specified bound-
ary between it and ‘female’, a specification of
content is informationally equivalent to a specifica-
tion of boundary.2 Only when the stimulus dimen-
sions vary continuously, rather than discretely, is
there a difference between content and boundary
representations.

The distinction between global and piecemeal
specification is intuitively acceptable but needs

rigorous definition for maximal usefulness. For
example, a piecemeal specification of the category
‘dog’ could be this: a dog is something like Lassie
or Rin-tin-tin or Benjie or Pongo. A global specifi-
cation of dog might be this: a dog is an animal with
four legs and a tail and fur and toenails (not claws
or hooves) and a height between 0.5 and 1.0 meters
and the ability to bark. (This is not an accurate
specification of ‘dog’, but it illustrates the idea.)
From these examples it appears that global specifi-
cations use a conjunction of properties, whereas
piecemeal specifications use a disjunction of prop-
erties. The problem with this distinction is that con-
junctions and disjunctions can be exchanged via
negation: ‘A or B’ is equivalent to ‘Not (Not A and
Not B)’. For example, to say that ‘a dog is like
Lassie or like Benjie’ is logically equivalent to say-
ing that ‘a dog is not both unlike Lassie and unlike
Benjie’. Despite this subtlety in the distinction
between global and piecemeal specifications, for
the purposes of this chapter I shall define a piece-
meal representation as one that involves disjunc-
tions in stimulus characteristics that are natural or
primitive in the theory. The disjunctions could be
formally realized as logical or as other mathemati-
cal expressions.

Finally, there is the distinction between strict and
graded matching of stimulus to category specifica-
tion. All theories of categorization must account for
the fact that human (and other species’) categoriza-
tion is probabilistic or graded. For example, a letter
drawn as ‘/-\’ could be interpreted as an ‘H’ or as an
‘A’, as in ‘T/-\E C/-\T’. As another example of
gradedness in category membership, a Labrador
retriever is usually rated as a more typical dog than
a Pekinese. Theories that use a graded matching
process naturally account for gradedness in catego-
rization. But theories that use strict matching cannot
explain gradedness unless other mechanisms are
included. Some strict-matching theories assume
that the encoding of the stimulus is probabilistic
(i.e. imperfect or distorted) or the specification of
the category conditions is probabilistic or the gen-
eration of the categorical response is probabilistic.
Some graded-matching theories also incorporate
probabilistic mechanisms.

In summary, any theory of category learning must
specify what information from the world is actually
retained in the mind and the format in which that
information is structured, how that information is
used, and how that information is learned.
Hopefully the theory also motivates why that par-
ticular learning procedure is useful. In this chapter
these issues are addressed in turn, for a few differ-
ent theories from Table 7.1. Each type of theory is
initially described informally, to convey the basic
motivating principles of the theory. Each theory is
also described with formal, mathematical terms. By
expressing a theory mathematically, the theory
gains quantitative precision rather than merely
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vague verbal description. Mathematical formulation
allows publicly derivable predictions rather than
theorist-dependent intuitively derived predictions.
Mathematical derivations permit stronger support
when predictions are confirmed in quantitative detail.
Formal models also engender greater explanatory
power when the formal mechanisms in the model
have clear psychological interpretation. Specification
in formal terms sometimes permits clearer appli-
cability because of precise specification of relevant
factors.

EXEMPLAR THEORIES

One sure way to learn a category is merely to mem-
orize its instances. For example, a learner’s knowl-
edge of the category bird might consist of knowing
that the particular cases named Tweety, Woody and
Polly are exemplars of birds. There is no derived
representation of a prototypical bird, nor is there
any abstracted set of necessary and sufficient fea-
tures that define what a bird is. As new cases of
birds are experienced, these cases are also stored in
memory. Notice, however, that just because these
exemplars of birds are in memory, the learner need
not be able to distinctly recall every bird ever
encountered. Retrieving a specific memory might
be quite different than using it for categorization.

So how are these stored exemplars used to cate-
gorize novel items? A new stimulus is classified
according to how similar it is to all the known
instances of the various candidate categories.
(Some exemplar models use only a subset of the
stored exemplars, e.g. Sieck & Yates, 2001.) For
example, a newly encountered animal is classified
as a bird if it is more similar to known exemplars of
birds than it is to known exemplars of squirrels or
bats, etc. The notion of similarity, therefore, plays a
critical role in exemplar theories.

This kind of exemplar theory falls in the top left
cell (A) of Table 7.1. The category is specified by its
contents, in this case by its exemplars. The specifi-
cation of contents is not a global summary but is
instead a collection of piecemeal information. The
process for matching a stimulus to the category rep-
resentation relies on graded similarity to exemplars,
not on strict match or mismatch with exemplars.

Selective attention

Not all features are equally relevant for all category
distinctions. For example, in deciding whether an
animal is a duck or a rabbit (a potential confusion
highlighted by Wittgenstein, 1953), it might be
important to pay attention to whether it can fly, but
to determine whether the animal is a crow or a bat,

it might be important to pay attention to whether it
has feathers (cf. Gelman & Markman, 1986).
Selective attention plays an important role not only
in exemplar theory but in many theories of catego-
rization. Selective attention will be further dis-
cussed in a subsequent section.

Learning for error reduction

In principle, exemplar encoding can accurately
learn any possible category structure, no matter
how complicated, because the exemplars in mem-
ory directly correspond with the instances in the
world. This potential computational power of
exemplar models is one rationale for their use. But
realizing this potential can be difficult, because
exemplar encoding can retard learning if highly
similar instances belong to different categories. One
way around this problem is to associate exemplars
with categories only to the extent that doing so will
reduce errors in categorization. Analogously,
various features or stimulus dimensions can be
attended to only to the extent that doing so will
reduce error. Thus, error reduction is one important
rationale for theories of learning.

The formal model described next expresses the
notion of error reduction in precise mathematical
notation. Variants of this exemplar model have been
shown to fit a wide range of phenomena in category
learning and generalization (e.g. Choi, McDaniel, &
Busemeyer, 1993; Estes, 1994; Kruschke & Johansen,
1999; Lamberts, 1998; Nosofsky & Kruschke, 1992;
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994; Nosofsky & Palmeri, 1997; Palmeri, 1999;
Pearce, 1994), but it is not without challenges (e.g.
Cohen, Nosofsky, & Zaki, 2001, and others cited
later). Exemplar models have also been used to char-
acterize individual differences in learning and atten-
tion (e.g. Treat, McFall, Viken, & Kruschke, 2001).
Some exemplar models have been extended to
involve dynamic processes that yield predictions
of response latencies (e.g. Cohen & Nosofsky, 2000;
Lamberts, 2000b).

Formal models of exemplar theory

A perceived stimulus can be formally represented
by its values on various psychological dimensions.
For example, among birds, an eagle might be repre-
sented by a large numerical value on the dimension
of perceived size, and by another large numerical
value on the dimension of ferocity, along with other
values on other dimensions. The psychological
value on the dth dimension is denoted �d

stim. These
psychological scale values can be determined by
methods of multidimensional scaling (e.g. Kruskal &
Wish, 1978; Shepard, 1962).
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In a prominent exemplar-based model
(Kruschke, 1992; Kruschke & Johansen, 1999;
Medin & Schaffer, 1978; Nosofsky, 1986), the mth
exemplar in memory is formally represented by its
psychological values on the various dimensions; the
value on the dth dimension is denoted �md

ex . The sim-
ilarity of the stimulus to a memory exemplar corre-
sponds to their proximity in psychological space.
The usual measure of distance between the stimu-
lus, s, and the mth memory exemplar is given by
dist(s, m) � �i �i �� i

stim � �mi
ex � , where the sum is

taken over the dimensions indexed by i, and �i � 0
is the attention allocated to the ith dimension. (This
assumes, of course, that the psychological dimen-
sions can be selectively attended to.) When atten-
tion on a dimension is large, then differences on that
dimension have a large impact on the distance, but
when attention on a dimension is zero, then differ-
ences on that dimension have no impact on dis-
tance. The distance is converted to similarity by an
exponentially decaying function: sim(s, m) � exp
(–dist(s, m)). Therefore, when the stimulus exactly
matches the memory exemplar so that the distance
between them is zero, then the similarity is 1.0, and
as the distance between the stimulus and the mem-
ory exemplar increases, the similarity drops off
toward zero. Shepard (1987) provided a review of
the exponential function as a model of human (and
other animal) similarity gradients. Lee and Navarro
(2002) describe a variation of the model in which
the stimulus dimensions are nominally scaled
instead of interval scaled.

The exemplars then influence the categorization
of the stimulus by ‘voting’. The strength of an
exemplar’s vote is its similarity to the stimulus,
such that exemplars that are highly similar to the
stimulus cast a strong vote, while exemplars that are
remote from the stimulus cast only a weak vote.
Each exemplar votes for candidate categories
according to associative strengths from the exem-
plars to the categories. The associative strength
from exemplar m to category k is denoted wkm, and
the total ‘voting’ for category k is vk � �m wkn sim
(s, m). The overall probability of classifying the
stimulus into category k is the total vote for cate-
gory k relative to the total votes cast overall.
Formally, the probability of classifying stimulus s
into category k is given by pk � vk ��c vc. Often this
response rule is generalized by including a parameter
to adjust the decisiveness of the choice probability;
two such forms are pk � vk

y��c vc
y and pk �

exp(�vk)��c exp(�vc ), whereby high values of
� map small differences in voting to large differ-
ences in choice probability. Wills, Reimers,
Stewart, Suret, and McLaren (2000) discuss prob-
lems with these response rules and propose an
alternative.

Participants in laboratory learning experiments
get corrective feedback on each learning trial. The
same procedure applies to learning in the model: the

model ‘sees’ the stimulus, votes for what it deems
to be the best classification, and then is presented
with the correct categorization. The model adjusts
its associative weights and attention strengths to
reduce the error between its vote and the correct
answer. Error is defined as E � �k(tk � vk)

2, where tk

is the ‘teacher’ value: tk � 1 if k is the correct cat-
egory, and tk � 0 otherwise. There are many possi-
ble methods by which the associative weights and
attention strengths could be adjusted to reduce this
error, but one sensible method is gradient descent
on error. According to this procedure, the changes
that make the error decrease most rapidly are com-
puted according to the derivative of the error with
respect to the associative weights and attention
strengths. The resulting formula for weight changes
is �wkm � �w (tk � vk) sim(s, m), where �w is a con-
stant of proportionality called the learning rate. This
formula states that the associative weight between
exemplar m and category k increases to the extent
that the exemplar is similar to the current input and
the category teacher is underpredicted. Notice that
after the weight changes according to this formula,
the predicted category will be closer to the correct
category, i.e. the error will have been reduced. The
analogous formula for attentional changes is a little
more complicated, but it essentially combines infor-
mation from all the exemplars to decide whether
attention on a dimension should be increased or
decreased (see Kruschke, 1992; Kruschke &
Johansen, 1999).

PROTOTYPE THEORIES

It might seem inefficient or wasteful to remember
every instance of a category. Perhaps some sort of
summary could be abstracted during learning, and
then the individual cases could be safely jettisoned.
The summary, also called a prototype, should be
representative of the various instances of the
category. There are several possible forms of this
prototype. One option is for the prototype to be the
central tendency, or average, of all the known
cases of the category. For example, the mental rep-
resentation of dog might be a medium-sized mutt
that blends the features of all the experienced
instances of dog. The dog prototype need not
necessarily correspond to any actually experienced
individual dog.

Another option for the prototype could be an ide-
alized caricature or extreme case that is maximally
distinctive from other categories. For example,
Lynch, Coley, and Medin (2000) reported that
expert foresters thought of trees in terms of ideal
extreme height, rather than in terms of typical
medium height. Palmeri and Nosofsky (2001)
report a similar finding with random dot patterns.
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Alternatively, a prototype could be the most frequent,
i.e. modal, instance; or a prototype might consist of a
combination of the most frequent or modal features
of the instances.

Whatever the specific nature of the prototypes,
a new stimulus is classified according to how
similar it is to the prototypes of the various candi-
date categories. A newly encountered animal is
classified as a dog to the extent that it is more
similar to the dog prototype than to other category
prototypes.

This type of theory appears in the second row and
left column of Table 7.1, cell C. The theory speci-
fies a single global summary for the content of each
category. The process of matching a stimulus to the
category representation uses graded similarity, not
strict match or mismatch.

One rationale for this approach to categorization
is that it is efficient: an entire set of members in a
category is represented by just the small amount of
information in the prototype. The economy of rep-
resentation does not eliminate the need for learning:
as new instances appear, a prototype must be
updated to reflect current information.

In several studies that compare prototype and
exemplar models, it has been found that prototype
models do not fit data better than exemplar models
(e.g. Ashby & Maddox, 1993; Busemeyer, Dewey, &
Medin, 1984; Busemeyer & Myung, 1988; Nosofsky,
1992; Reed, 1972). Other studies have found evi-
dence that is difficult for basic exemplar models to
address, but which can (or might) be better
addressed by prototype models (e.g. Blair & Homa,
2001; Homa, Sterling, & Trepel, 1981; Minda &
Smith, 2001; Smith & Minda, 1998). One conclu-
sion is that human behavior is best described as
using a combination of exemplar and prototype rep-
resentations (e.g. Storms, DeBoeck, & Ruts, 2001),
and also rule representations, which will be
described later. The challenge for cognitive scien-
tists is carefully discerning the conditions under
which each type of representation is used and how
they interact.

Formal models of prototype theory

Because a prototype has a value on every dimen-
sion of the stimulus, it can be formally represented
much like an exemplar, although a prototype need
not correspond with any actually experienced
instance. The prototype for category k has psycho-
logical value on dimension i denoted by �ki

proto. For
the particular prototype model defined here, this
value represents the central tendency of the cate-
gory instances on that dimension. Other prototype
models might instead use the ideal value or modal
value on each dimension. The model classifies
a stimulus as category k in a manner directly

analogous to the exemplar model, such that the
probability of classifying stimulus s into category k
is given by: pk � sim(s, k)��m sim (s, m). The sum
in the denominator is over all category prototypes,
instead of over all exemplars. In principle, the
probability choice formula for prototype models
could include a decisiveness parameter like the
exemplar model, but in the prototype model such a
decisiveness parameter trades off with the speci-
ficity parameter in the similarity computation so
that it has no independent influence.

As new instances are experienced during learn-
ing, the prototypes are adjusted to reflect the
instances. For the first experienced instance of
a category, the prototype is created and set to
match that instance. For subsequently experienced
instances of the category, the prototype changes
from its current values slightly toward the new case.
By gradually moving toward the instances of
the category as they are experienced, the prototype
gradually progresses toward the central tendency of
those instances. 

The learning of central tendencies can be for-
malized in the following algorithm, closely related
to so-called ‘competitive learning’ or ‘clustering’
methods. The idea is that a prototype should be
adjusted so that it is as similar as possible to as
many instances as possible; in this way the proto-
type is maximally representative of the stimuli in
its category. Define the total similarity of the pro-
totypes to the instances as S = �k,ssim(s, k), where
sim(s, k) � (–exp (� i �i [� i

stim � � ki
proto]2). The ques-

tion then is how best to adjust � ki
proto so that the total

similarity increases. One way to do this is gradient
ascent: the prototype values are adjusted to
increase the total similarity as quickly as possible.
The resulting formula, determined as the deriva-
tive of the total similarity with respect to the
coordinates, yields ��ki

proto � � sim (s, k)�i(� i
stim �

� ki
proto). This formula causes each prototype’s

values to move toward the currently experienced
stimulus, but only to the extent that the prototype
is already similar to the stimulus, and only to the
extent that the dimension is being attended to.
In this way, prototypes that do not represent the
stimulus very well are not much influenced by the
stimulus. 

An intermediate scheme between prototype rep-
resentation and exemplar representation is the use
of multiple prototypes per category, which can be
useful to capture multimodal distributions (e.g.
Rosseel, 2002). Alternative learning schemes have
been used, such as methods derived from Bayesian
statistics (Anderson, 1991). As the number of pro-
totypes per category increases, there can eventually
be one prototype per exemplar, and such models
become equivalent to exemplar models (Nosofsky,
1991). In exemplar models, however, the coordi-
nates of the exemplars typically do not get adjusted
from one trial to the next. 
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RULE THEORIES

Other ways of representing categories are with
rules. There are a variety of so-called rule-based
models in the literature, so that it can be difficult to
define exactly what a rule-based model is (e.g.
Hahn & Chater, 1998; Smith & Sloman, 1994). One
candidate rule that defines membership in the cate-
gory of rule-based models is this: a rule-based
model uses either a strict match/mismatch process
or a boundary representation, i.e. a rule-based
model does not use graded matching to content. In
Table 7.1 this corresponds to cells in the right col-
umn or the bottom two rows (i.e. all cells except A
and C). The usage of the term ‘rule’ is merely con-
ventional, however. What really defines the nature
of a categorization model is the type of representa-
tion and matching process (and learning process) it
uses, as analyzed in Table 7.1.

An example of a rule-based model is one that
uses featural rules that specify strict necessary and
sufficient conditions that define category member-
ship. For example, something is a member of the
category ‘bachelor’ if it is human, male, unmarried
and eligible. This type of featural rule theory falls
in the second row and right column of Table 7.1,
cell D. In this case, the category is specified by a
global summary of its content, and the summary
must be perfectly matched or else the stimulus is
not in the category.

One subtlety of features in a rule is that each fea-
ture is itself a category. For example, for something
to be a bachelor it must have the features of being
human, male, unmarried and eligible. Each of these
features is itself a category that must be defined in
terms of content or boundary, globally or piece-
meal, etc. This echoes a theme mentioned above,
that categories occur at many levels of analysis
simultaneously.

It is possible for strict rules of content to be spec-
ified piecemeal. This type of theory falls in the first
row and right column of Table 7.1, cell B. For
example, a pitch in baseball is a strike if it is swung
at by the batter and missed, or it is in the strike zone
but not hit.

Another example of such a piecemeal rule theory
is a strictly matching exemplar model. In this type
of theory, a category is represented by its instances,
but a stimulus is classified as a member of the cate-
gory if and only if it exactly matches one of the
instances. The exemplar subsystem of Smith and
Minda (2000) is one such example of this kind of
theory. The Sparse Distributed Memory (SDM)
model developed by Kanerva (1988) uses an inter-
nal representation that consists essentially of ran-
domly distributed exemplars that have a strict
threshold for matching: a stimulus ‘matches’ the
exemplar if and only if it lies within a specific dis-
tance from the exemplar.

Instead of specifying content, rule theories can
instead specify boundaries that separate categories.
Rules for category definition are typically a single
threshold on a single dimension, e.g. a building is a
skyscraper if it is more than ten stories tall. In some
rule-based theories, rules can be more complicated
boundaries, e.g. a building is a skyscraper if its height
divided by its width is greater than 1.62.

Rule models that use strict match/mismatch
processes predict that human performance should
be perfect, i.e. classification should be strictly all or
nothing depending on whether the conditions (con-
tent or boundary) are perfectly matched or not. Yet
human classification is imperfect. Rule models that
use a strict match/mismatch process must accom-
modate the ‘fuzziness’ of human classification per-
formance through mechanisms such as perceptual
randomness or decisional randomness. Thus, the
rule is strict, but the stimuli are imperfectly per-
ceived or the classification dictated by the rule is
imperfectly produced.

Some boundary-based (rule) models do not
assume strict match/mismatch processes, and
instead used graded similarity to the boundary.
One example of this is the PRAS model of
Vandierendonck (1995), which combines rectangu-
lar decision boundaries with exponentially decaying
similarity gradients.

Rules are computationally attractive as category
representations because they can be uniformly
applied to all stimuli, regardless of the instances
actually experienced. For example, the rule for
‘bachelor’ can be applied with equal facility to all
stimuli, regardless of the specific bachelors we have
previously encountered. This uniformity of applicabil-
ity might not mimic human categorization (Allen &
Brooks, 1991). Rules are also computationally attrac-
tive because they can describe feature combinations
that are not tied to the specific featural realizations.
For example, a rule could be that an item is a
member of a category if the item has either one of
two features but not both. This ‘exclusive-or’ rule
can be applied to any two features, and is not tied to
particular features such as color or shape. Shanks
and Darby (1998) showed that people can indeed
learn such abstract rules that are not tied to specific
features. The hypothesis-testing model of Levine
(1975) is one model that uses structural similarities
of abstract rules to predict ease of shifting from one
rule to another during learning.

Many natural categories are very difficult to
specify in terms of content rules, however (e.g.
Rosch & Mervis, 1975). For example, the category
‘game’ appears to have no necessary and sufficient
features (Wittgenstein, 1953). Nevertheless, people
are prone to look for features that define category
distinctions, and people tend to believe that such
defining features exist even if in fact they do not
(Ashby, Queller, & Berretty, 1999; Brooks, 1978).
The propensity to focus on single dimensions might
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depend on the context and content domain; for
example, in social conditions people might be
more prone to sum evidence across dimensions
(Wattenmaker, 1995).

Formal models of rule theory

In the 1960s and 1970s, popular rule models
included ‘hypothesis testing’ or ‘concept learning’
models (for a review, see Levine, 1975). The
emphasis at the time was on how people learn logi-
cal combinations of features that define a category.
The models therefore emphasized strict matching to
content (features), and these models fall into the top
two rows of the right column of Table 7.1, cells B
and D. In these sorts of models, individual features
are tested, one at a time, for the ability to account for
the correct classifications of the stimuli. For exam-
ple, the model might test the rule, ‘If it’s red it’s in
category K’. As long as the rule works, it is retained,
but when an error is encountered, another rule is
tested. As simple rules are excluded, more compli-
cated rules are tried. A recent incarnation of this type
of model also is able to learn exceptions to rules, by
testing additional features of instances that
violate an otherwise successful rule (Nosofsky,
Palmeri, & McKinley, 1994). This model is also
able to account for differences in behavior across
people, because there can be different sets of rules
and exceptions that equally well account for the
classifications of the stimuli. A different rule-based
model is presented by Miller and Laird (1996), for
which typicality and similarity effects are addressed
by probing discrete prediction rules in a series of
steps.

When stimuli vary on continuous dimensions
instead of discrete features, rule models can specify
the boundary that separates the categories (cell H of
Table 7.1). In one class of models, the decision
boundary is assumed to be have a shape that can be
described by a quadratic function, because a qua-
dratic describes the optimal boundary between two
multivariate normal distributions, and natural cate-
gories are sometimes assumed to be distributed nor-
mally (e.g. Ashby, 1992). In this approach, there are
three basic postulates. First, the stimulus is repre-
sented as a point in multidimensional space, but the
exact location of this point is variable because of per-
ceptual noise. Second, a stimulus is classified accord-
ing to which side of a quadratic decision boundary it
falls on. Third, the decision boundary is also subject
to variability because of noise in the decision
process. Thus, although the classification rule is strict
and there is no explicit role in the model for similar-
ity gradients, the model as a whole produces a grada-
tion of classification performance across the
boundary because of noise in perception and deci-
sion. There are many variations on this scheme of
models, involving different shapes of boundaries,

deterministic versus probabilistic decision rules, etc.
(Ashby & Alfonso-Reese, 1995; Ashby & Maddox,
1993). 

It is possible to combine multiple boundaries to
specify a category distinction (cell F of Table 7.1).
For example, a model by Ashby, Alfonso-Reese,
Turken, and Waldron (1998) combines linear deci-
sion boundaries that involve single dimensions,
corresponding to verbalizable rules, with linear
decision boundaries that combine two or more
dimensions, corresponding to implicitly learned
rules. These decision boundaries are then weighted
to generate an overall linear decision boundary.
Thus, while several component boundaries are
involved, the overall system behaves as if it had a
single globally defined boundary.

HYBRID REPRESENTATION THEORIES

Is human category learning completely described
by any one of the types of representation in Table 7.1?
It is not likely. Recent theories combine different
representations to account for complex patterns in
human behavior. A variety of work has shown that
neither rule-based nor prototype models can fully
account for human categorization (e.g. Ashby &
Waldron, 1999; Kalish & Kruschke, 1997). In par-
ticular, exemplar representation must be supple-
mented with rules to account for human learning
and generalization (e.g., Erickson & Kruschke,
2002; Shanks & St John, 1994; Smith, Patalano, &
Jonides, 1998). Some evidence apparently for
multiple systems can, it turns out, be explained by
single-representation systems (e.g. Lamberts, 2001;
Nosofsky & Johansen, 2000; Nosofsky & Kruschke,
2002), but follow-up work continues to challenge
the single-representation approach (e.g. Ashby &
Ell, 2002; Erickson & Kruschke, 2002).

When multiple representations are combined into
a single model, a significant challenge to the theorist
is determining how the two representations interact
or compete during learning and categorization. One
approach to his problem is presented in a model by
Erickson and Kruschke (1998, 2002; Kruschke &
Erickson, 1994), which combines exemplars with
single-dimension rules. The exemplar representation
falls in the top left cell (A) of Table 7.1, and the rule
representation falls within the third row and left col-
umn (cell E). What is important about this model is
how it decides when to apply which representation.
The model does this with a gating mechanism that
learns which representation to pay attention to,
depending on the exemplar. Thus, the attentional
distribution (attend more to exemplars versus attend
more to rules) is itself a categorization before the
final categorization of the stimulus. When a stimulus
appears, the model first classifies it as a rule-
governed stimulus or an exemplar-governed stimulus,
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and then the model accordingly classifies the
stimulus using the rule-based or exemplar-based
subsystem.3

Hybrid representation models are proliferating
(e.g. Anderson & Betz, 2001), and are sure to
appear in creative new approaches in the future.
There is also evidence for multiple learning
processes, which might also interact with the types
of representations being learned (e.g. Raijmakers,
Dolan, & Molenaar, 2001; VanOsselaer &
Janiszewski, 2001).

ROLE OF SIMILARITY

Exemplar models depend on the computation of
similarity between stimuli and items in memory.
Prototype models also rely on the determination of
similarity between stimuli and memory representa-
tions (namely, the prototypes). Even some rule
models compute similarity between stimuli and
boundaries (e.g. Vandierendonck, 1995), or can be
re-conceptualized as doing so.

Some researchers have criticized the notion of
similarity as being internally incoherent, and some
critics have argued that similarity does not always
correlate with categorization. If similarity as a
theoretical construct is decrepit and dilapidated,
then category learning models founded on similar-
ity are also in peril of collapse.

There have been a number of demonstrations that
suggest that similarity is incoherent. In these situa-
tions, similarity seems to change depending on how
it is measured. Psychological similarity can be
empirically assessed by a number of methods. One
method simply asks people to rate the similarity of
two items on a scale from 1 to 10; another method
measures discriminability or confusability of items.
Usually these different assessments agree: items
measured to be more similar than other items by one
method are also measured to be more similar by a
different method. But sometimes different assays do
not agree (e.g. Tversky, 1977). Similarity can also
be context-specific: in the context of hair, gray is
more similar to white than to black, but in the con-
text of clouds, gray is more similar to black than to
white (Medin & Shoben, 1988). In general, models
of psychological similarity presume which features
or dimensions are used for comparing the objects,
without any explanation of why those features or
dimensions are selected. Models of similarity do
have parameters for specifying the attention allo-
cated to different features, but the models do not
describe how these attentional values come about
(Goodman, 1972; Murphy & Medin, 1985).

Other research suggests that similarity is not
always an accurate predictor of categorization.
Consider the category, things to remove from a burn-
ing house. The items heirloom jewelry and children

are both central members of this category, yet they
have little similarity in terms of visual appearance
(Barsalou, 1983). On the other hand, if attention is
directed only to the features valuable, irreplaceable
and portable, then children and heirloom jewelry
bear a strong similarity. As another example, this one
taken from personal experience, consider an actual
label on a product: ‘Great for sleeping, gun shooting,
studying, aircraft.’ What is the product? Earplugs.
The applications of the product, i.e. the members
of this category, are highly similar only when atten-
tion is directed to the critical feature of undesired
noise. Once again the issue of what to attend to is a
theoretical crux, not addressed by current theories of
similarity.

Thus, similarity is itself a complex psychological
phenomenon in need of theoretical explication.
Despite the complexities, there are strong regulari-
ties in similarity and categorization data that should
yield to formal treatment. Excellent reviews of
these topics have been written by Goldstone (1994)
and by Medin, Goldstone, and Gentner (1993). In
particular, a comprehensive theory of similarity will
need a theory of attention. The role of attention will be
discussed again, below.

MORE COMPLEX REPRESENTATIONS

The previous discussion has assumed that items are
represented by collections of features. These repre-
sentations are ‘flat’ in the sense that no feature is a
combination of other features, and every item within
a category has the same universe of candidate fea-
tures. But psychological representations of complex
categories might involve structured representations,
involving hierarchical combinations of features and
dimensions that are present in some instances but
not others. For example, the category vehicle has
instances such as car that have windshields, but also
has instances such as bicycle that have no wind-
shields. Future models of category learning will
need to address these non-flat representations
(Lassaline & Murphy, 1998).

Palmeri (1999) showed that an exemplar-based
model can account for some learning of hierarchi-
cally organized categories, structured by superordi-
nate, basic and subordinate levels analogous to
vehicle, car and Ford. But it is an open question as
to whether any single-representation model can
comprehensively account for learning of categories
at multiple levels. Lagnado and Shanks (2002) dis-
cuss multiple levels of representation and suggest
that a dual-component model is needed. Theories of
category learning will eventually have to address
other varieties of complex representation, e.g.
Markman and Stilwell (2001) discuss the notion of
a ‘role’-governed category which specifies the rela-
tional role played by its members.
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Whereas complex representations will eventually
need to be addressed by category-learning models,
at this time even the simplest types of cue combina-
tion are not fully understood. For example, there is
active research in determining the conditions under
which two features are processed as independently
additive components in a representation or as a con-
junctive compound that is distinct from the compo-
nents (e.g. Shanks, Charles, Darby, & Azmi, 1998;
Shanks, Darby, & Charles, 1998; Williams &
Braker, 1999; Young, Wasserman, Johnson, &
Jones, 2000). Lachnit, Reinhard, and Kimmel
(2000) discuss the need for a representation of the
abstract relational dimension of ‘separate’ versus
‘together’, distinct from the numerical quantifica-
tion of one versus two.

OTHER FORMS OF INDUCTION

Until this point in the chapter, it has been empha-
sized that the function of categorization is to infer
an unseen feature from given information. The
inferred feature has been a nominal category or
characteristic, and the process of inference has con-
sisted of some kind of matching of a ‘flat’ stimulus
vector to a stored vector or set of vectors. But the
inferred information could be richer than a simple
nominal category, and the inference process could
use representations and processes more complicated
than matching of flat vectors.

If the inferred information is a value on a contin-
uous scale, then the mapping from stimuli to
inferred values constitutes what is called a function.
For example, a physician who must prescribe an
appropriate amount of medication might know the
functional relationship between (a) the observed
values of body weight and blood pressure and
(b) the inferred value of amount of medication. A
baseball outfielder might know the functional rela-
tionship between (a) the observed values of distance
to infielder and urgency and (b) the inferred values
of amount of force and angle of throw.

The study of function learning is relatively
nascent compared to category learning. A very use-
ful review is provided by Busemeyer, Byun,
Delosh, and McDaniel (1997). There are many
analogous findings in the two areas, in terms of rel-
ative ease of learning different types of dimensional
combinations. Theories of function learning can
also be differentiated according to the dimensions
in Table 7.1, but the most prominent difference
among function-learning theories is whether the
function is specified globally or piecemeal. Koh
and Meyer (1991), for example, have proposed a
function-learning model in which globally defined
functions are gradually regressed onto the observed
instances during learning, much like gradual tuning

of hidden nodes in backpropagation (Rumelhart,
Hinton, & Williams, 1986; but cf. Kruschke, 1993).
Delosh, Busemeyer, and McDaniel (1997) have
described a model that learns exemplars, i.e. piece-
meal input–output value combinations, analogous
to the exemplar-based category-learning model
ALCOVE (Kruschke, 1992), and then uses a linear
extra-/interpolation response strategy between
learned exemplars. Kalish, Lewandowsky, and
Kruschke (in press) have described a sophisticated
model that applies different globally defined func-
tions to different specific regions of the input space,
i.e. piecemeal application of global functions, anal-
ogous to the piecemeal application of global rules in
the category-learning model ATRIUM (Kruschke &
Erickson, 1994; Erickson & Kruschke, 1998, 2002).

The induction process might be based on repre-
sentations more complicated than flat vectors.
People have rich theoretical knowledge about many
domains. For example, people know that birds are
more than a collection of feathers, beak, wings,
chirps, etc. People also know that wings enable
flight, that flight has to do with air flow and air
pressure; that some birds compete for territory with
other birds of the same species, that bird songs can
mark territory, etc. Rich knowledge such as this is
packaged into theories of how behavior works and how
the features are causally interrelated. This kind of
knowledge might not be felicitously represented as
a flat vector of features, and instead might need to
be represented as a hierarchy of features in nested
relations. Inference based on these complex repre-
sentations must then also be more complex than
feature–vector matching. Many interesting effects in
inductive reasoning can be captured by simple
feature–vector matching (Sloman, 1998), but more
complex representations and processes are needed
to account for other situations, such as those involv-
ing causal relations (e.g. Ahn, Kim, Lassaline, &
Dennis, 2000). Nevertheless, just as categorization
theorists debate exemplar versus rule-based models,
inductive-reasoning theorists also debate exemplar
versus rule-based models (Hahn & Chater, 1998;
Heit, 2000; Sloman, 1996).

TOWARD A COMPREHENSIVE THEORY?
THE ROLE OF ATTENTION

The many complexities of categorization and infer-
ence will not easily yield to a comprehensive
theory, but it does seem that a crucial issue in the
path of progress is attention. In its broadest defini-
tion, attention simply refers to the selectivity of
information usage in inference. People learn that
out of the plethora of available information, only
some aspects should be attended to in certain situa-
tions. Attention refers to both enhanced or amplified
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processing of some information and diminished or
suppressed processing of other information. What
often poses the biggest challenges to theories of
categorization is the fluidity and context specificity
of information selection. Moreover, this selection can
occur at multiple levels of information simultaneously,
so that it is not only the input features that are selected,
but the various higher-level re-representations as
well. A variety of perplexing phenomena in category
learning might be solved by appropriate theories of
attention.

Why should there be attentional selection? One
reason is that selection of relevant information can
accelerate learning. This speed is engendered by the
attentionally enhanced discriminability of informa-
tion that requires different responses. For example,
suppose that color is critical to discriminate edible
from poisonous mushrooms, such that darker
shades of brown are to be avoided. By attending to
color, the discrimination between darker and lighter
brown is improved, therefore accuracy and learning
are improved.

Not only does the amplifying of relevant infor-
mation benefit learning, so does the quashing of
irrelevant information. This benefit occurs because
learned associations will generalize across instances
that differ on the irrelevant dimension if that dimen-
sion is ignored. For example, suppose that size is
irrelevant for discriminating edible from poisonous
mushrooms. If you learn that a certain 4 cm tall
mushroom is edible, then when you see a 8 cm tall
mushroom of the same color you will not starve.
That is, by learning that size is irrelevant, learning
about a 4 cm mushroom immediately benefits infer-
ence about an 8 cm mushroom.

A classic example of enhanced learning due to
attentional quashing of irrelevant dimensions
comes from the work of Shepard, Hovland, and
Jenkins (1961). They studied the relative ease with
which people learned different classifications of a
set of objects. The objects varied on three binary-
valued dimensions. For example, the objects could
be simple geometric forms that vary on dimensions
of shape (circle or triangle), size (large or small)
and color (red or green). The so-called ‘Type II’
structure has two relevant dimensions; an example
of such a structure can be described by this rule: a
form is in category 1 if it is circular or large but not
both, otherwise it is in category 2. A condition of
that form, i.e. one feature or another but not both, is
called an exclusive-or, also abbreviated as ‘xor’.
Notice in this example that shape and size are rele-
vant, but not color. The so-called ‘Type IV’ struc-
ture, on the other hand, has three relevant
dimensions; an example is as follows: a form is in
category A if it has any two or more of circular,
large and red. Shepard et al. (1961) found that the
Type II structure, involving just two relevant
dimensions, was easier to learn than the Type IV
structure, involving three dimensions, despite the

fact that instances in the Type IV structure are more
compactly distributed in the three-dimensional
stimulus space. Nosofsky and Palmeri (1996) found
that this advantage for Type II occurs only for stim-
uli that have dimensions that can be selectively
attended to. For the ‘integral’ dimensions of hue,
saturation and brightness of colors, which are
extremely difficult to selectively attend to, Type II
is more difficult than Type IV. Nosofsky and
colleagues (Nosofsky et al., 1994; Nosofsky &
Palmeri, 1996) found that a model that incorporates
learned selective attention (ALCOVE: Kruschke,
1992) accommodated the human learning data very
well, but models without selective attention failed.

Attentional selection applies not only to the input
end of information processing, but also to the out-
put end. Of the many actions a person might take,
typically only one action can be carried out at a
time. Thus, cognition must ultimately be selective
at its output, and this required selectivity might be
enhanced by selectivity earlier in the processing
stream. Moreover, action influences the input to
cognition. Our eyes can be directed to only a limited
part of the world, and our hands can feel only a
limited extent of a surface. If the world imposes a
cost for lingering too long on irrelevant information
(e.g. by not detecting predators or competitors for
limited resources before they strike), then it is adap-
tive to learn what to attend to. The selectivity
imposed upon perceptions and actions by our effec-
tors suggests that sources of information throughout
the processing stream should compete for attention.
Maddox (2002), for example, has tried to assess
attention at different perceptual and decisional
levels in the context of category learning. Thus, a
third rationale for attentional learning is that per-
ception and action have limited scope and the
organism should therefore learn what to attend to
when in a competitive environment.

Numerous studies have reported evidence that
attention during learning is indeed of limited capa-
city, such that attending to one source of informa-
tion detracts from utilizing another source (examples
of recent relevant articles include Ashby & Ell, 2002;
Gottselig, Wasserman, & Young, 2001; Kruschke &
Johansen, 1999; Nosofsky & Kruschke, 2002;
Waldron & Ashby, 2001). Many theories of learning
include some attentional capacity constraint (e.g.
Pearce, 1994) or cue competition (e.g. Rescorla &
Wagner, 1972), but relatively few theories include
mechanisms for attentional learning (Kruschke,
2001a). Evidence abounds for cue competition in
associative or category learning, and some research
has also found cue competition in function learning
(e.g. Birnbaum, 1976; Busemeyer, Myung, &
McDaniel, 1993; Mellers, 1986). If category learning
and function learning share similar mechanisms, as
discussed earlier, then attention learning should be
robustly evident in function learning as well. In
summary so far, attentional learning explains a
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number of phenomena in human learning because
attention improves discrimination on relevant
dimensions, improves generalization over irrelevant
dimensions, and addresses the problem of limited
capacity in perception and action.

Attentional shifting is assessed not only by its
influence on learning in novel domains, but also by
its influence on subsequent learning. Much research
has examined transfer of learning when there are
shifts in the relevance of information. The motivation
for this type of assessment is straightforward: if a
person has learned that some dimensions are relevant
but others are irrelevant, then a subsequent catego-
rization that retains the same relevant dimensions
should be relatively easy to learn but a subsequent
categorization that changes the relevance of dimen-
sions should be relatively difficult. For example, if
people initially learn that red indicates category 1 and
green indicates category 2 whereas shape is irrele-
vant, then it should be easy subsequently to learn that
blue indicates category 1 and yellow indicates cate-
gory 2, but it should be difficult to learn that circle
indicates category 1 and triangle indicates category 2.
The former type of shift is called an ‘intradimen-
sional shift’ (IDS) because the relevant values for the
categorization remain within the same dimension.
The latter type of shift is called an ‘extradimensional
shift’ (EDS) because the relevant values change to a
different dimension. 

A useful notation for the structure of an IDS is
A(B) → An(Bn), where the relevant dimension is
denoted by a letter without parentheses, the irrele-
vant dimension is denoted by a letter with parenthe-
ses, the shift is denoted by the arrow, and the ‘n’
indicates novel values of the dimensions. An EDS
is denoted by A(B) → Bn(An). It is interesting to
ask whether the advantage of IDS over EDS is due
to learned perseveration on the relevant dimension
or to learned inhibition of the irrelevant dimension,
or both. Owen, Roberts, Hodges, Summers, Polkey,
and Robbins (1993) attempted to isolate those two
influences with two shifts that eliminated one of the
initial dimensions. One shift eliminated the initially
irrelevant dimension so that it could no longer
influence the learning of the shift stage. In abstract
notation, the design was A(B) → Cn(An). This shift
would be difficult only if people had learned to per-
severate on dimension A. Another design was A(B) →
Bn(Cn), which would be difficult only if people had
learned to inhibit dimension B. Owen et al. (1993)
found that both types of shift were difficult, indi-
cating that people learn both perseveration on the
relevant dimension and inhibition of the irrelevant
dimension.

Kruschke (1996b) studied more complex designs
so that relevance shifts could be conducted without
introducing novel values of the dimensions. This
allowed comparing relevance shifts with reversal
shifts, wherein the mapping to categories is simply
reversed without changing the stimuli. The initially

learned structure was an xor on dimensions A and B,
with dimension C irrelevant, denoted AxorB(C).
The reversal shift, denoted AxorB(C) →
AxorB(C)rev, was extremely easy for people to
learn. A shift that retained one of the relevant
dimensions and was therefore a type of IDS,
denoted AxorB(C) → A(B)(C), was next easiest,
and a shift to the initially irrelevant dimension, a
type of EDS denoted AxorB(C) → C(A)(B), was
more difficult. Kruschke (1996b) found that the dif-
ficulty of shifting to a previous irrelevant dimension
could be nicely captured by a model with learned
attention, but the great facility of reversal shifting
demanded an additional remapping mechanism.
Neural evidence for the distinct processing of rele-
vance and reversal shifts comes from Rogers,
Andrews, Grasby, Brooks, and Robbins (2000).
Further variations of IDS and EDS structures were
studied by Oswald, Yee, Rawlins, Bannerman,
Good, and Honey (2001), using rats as subjects. The
researchers found that AxorB(C) → AxorBn(Cn),
i.e. a type of IDS, was easier than AxorB(C) →
AxorCn(Bn), a type of EDS. Not only was the
structure more complex than the traditional
IDS/EDS, but the dimensions were in three separate
modalities (auditory, visual and tactile) and the A
dimension was phasic (a brief tone) whereas the B
and C dimensions were tonic (static patterns on the
walls and floors). The robustness and generality of
the advantage of IDS over EDS is generally inter-
preted as strong evidence for attentional learning in
the initial phase of training, with perseveration of
that learning into the subsequent phase.

Attentional learning does more than accelerate
learning in completely novel domains. Attentional
shifting also preserves previous learning for similar
stimuli, whenever possible. Thus, when new stim-
uli appear that share some aspects with previously
learned stimuli but also have some novel aspects, if
the previously relevant aspects continue to cor-
rectly predict appropriate behavior, then the novel
aspects will quickly be learned to be irrelevant.
That is, the previously learned knowledge about
the relevant aspects will be respected, to the extent
that it continues to be successful. On the other
hand, if the new stimuli demand different behavior,
then attention will quickly shift to the novel
aspects, thereby protecting the previously learned
stimuli from being ‘overwritten’ by the new items.
Thus, attention shifting protects previously learned
categorizations by reducing interference when new
items demand different categorizations. This is
achieved by attentionally highlighting novel
aspects of the stimuli, and associating these aspects
with the new category.

An example of this attentional highlighting
comes from the otherwise perplexing phenomenon
known as the inverse base-rate effect, wherein a cue
that indicates a rare category is apparently over-
weighted (Medin & Edelson, 1988). In this procedure,
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people initially learn that cues A and B indicate
category 1, and subsequently learn that cues A and
C indicate category 2. When tested with the new
cue combination B and C, people tend to classify it
as category 2, despite the facts that the cues are
really equally predictive of the two categories and
the first category was more frequent overall. The
apparently irrational behavior is naturally explained
by attentional shifting: when learning the second
category, people shift attention away from cue A
because they have already learned that it predicts
category 1, and they shift attention to cue C because
it does not conflict with previous learning.
Therefore they learn a strong association from cue
C to category 2, and, moreover, they learn that
when cue C appears they should attend to it, espe-
cially in the context of cue A. The quantitative
details of data from many such experiments are
accurately accounted for by models that have rapid
shifts of attention during learning (Dennis &
Kruschke, 1998; Fagot, Kruschke, Depy, &
Vauclair, 1998; Kalish, 2001; Kalish & Kruschke,
2000; Kruschke, 1996a, 2001b).

Another phenomenon, called apparent base-rate
neglect (Gluck & Bower, 1988), can also be
explained by attentional shifting of this nature
(Kruschke, 1996a). The essential idea is that cate-
gories that occur more frequently (i.e. have higher
base rates) are learned first. Subsequently the less
frequent categories are learned, and attention high-
lights the distinctive features of the rare categories
in order to protect the previous learning about the
frequent categories. The highlighting of distinctive
features of the rare categories is difficult for some
popular exemplar-based models to account for (e.g.
Lewandowsky, 1995), but it can be well accommo-
dated by an exemplar-based model that has rapidly
shifting, learned selective attention (Kruschke &
Johansen, 1999). Another related phenomenon is
the ‘contrast effect’ reported by Kersten, Goldstone,
and Schaffert (1998). Essentially, the contrast effect
occurs with an EDS using novel categories in the
shift phase. Kersten et al. (1998) suggested that the
ease of an EDS for novel categories was best
explained by a distinct type of attention.
Alternatively, it can be interpreted as a case of
attentional highlighting. When the categories are
novel, attention does not perseverate on previously
relevant dimensions because doing so would con-
tradict previously learned categories. Instead,
attention highlights distinctive dimensions to
rapidly accommodate the newly demanded out-
comes. Thus, an EDS is relatively difficult when
the categories are the same as the initial learning,
but it is relatively easy when the categories
are novel.

The attentional shift learned during the inverse
base-rate effect is context-specific, i.e. attention
shifts away from cue A to cue C especially in the
context of those two cues and the corresponding

responses. The theory of attention shifting propounded
here asserts that attention shifts are context- and
exemplar-specific, i.e. attentional redistributions
are a learned response from particular cue combina-
tions, with some degree of graded generalization
from those learned cases. The context specificity of
learned attention can address results of various
other category-learning experiments. Macho
(1997), for example, had people learn a prototype
structure divided in two phases. In this structure, all
dimensions had two values, denoted 1 and 2. If the
stimuli had three dimensions (there were actually
more dimensions in Macho’s experiments), then the
prototype of one category had values of 1 on all
three dimensions, denoted 111. The prototype of the
other category had the opposite values on all three
dimensions, i.e. 222. Other instances were symmet-
rically distributed around the prototypes, e.g. the
first category also included exemplars 112, 121 and
211, whereas the second category also included
exemplars 221, 212 and 122. Training on the cate-
gory instances was split across phases such that
each phase made different dimensions more rele-
vant than others despite the fact that when collapsed
over the course of both phases the dimensions were
equally relevant. Using our three-dimensional
example, the first phase could have consisted of
instances 111, 112, 221 and 212, for which only the
first dimension is perfectly predictive of the correct
categorization, and the second phase could have
consisted of instances 121, 211, 122 and 222, for
which only the third dimension is perfectly predic-
tive of the correct categorization. Macho (1997)
found that at least one exemplar-based model with
attentional shifts (ALCOVE: Kruschke, 1992)
could not accommodate the results. That model’s
problems were that it could not shift attention
quickly enough, nor could it learn exemplar-
specific attentional redistributions. It is likely that
more recent models with rapid shifts of attention,
and with exemplar-specific learned attention (e.g.
Kruschke & Johansen, 1999; Kruschke, 2001a),
could more accurately account for the results.

In another experiment demonstrating the context
specificity of learned attention, Aha and Goldstone
(1992) showed that people can learn that one
dimension is relevant for categorization in one
region of a stimulus space, but a different dimen-
sion is relevant in a different region of the space.
Erickson and Kruschke (2001) extended their
results by showing there are individual differences
in which regions of the space are learned first, and
that a model that shifts attention among rules,
depending on the exemplar, fits the data well.

In general, the sequence of learning plays an
important role in what is learned. The variety of
experiments summarized above indicated that sub-
sequent learning can be strongly influenced by pre-
vious learning. Base rates influence what is learned
by influencing the sequence with which items and
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categories are learned. The order of learning influences
what is learned in large part because attention will
shift to those attributes that facilitate learning.
Goldstone (1996) showed in several insightful
experiments that people will learn more non-
diagnostic features of a category if many instances
of the category are presented consecutively than if
the instances are interleaved with cases from a con-
trasting category. Spalding and Ross (1994) showed
that the particular instances that people analyze
early in learning have a strong influence on what is
learned about the categories. In particular, attributes
common to early-learned cases of a category will
tend to dominate knowledge of those categories.
Billman and Davila (2001) reported that it is easier
for people to discriminate categories that contrast
consistently on a few features.

These influences of training order are not merely
laboratory curiosities, but apply also to real-life
learning in clinical settings (Welk, 2002) and
language acquisition (Smith, Jones, Landau,
Gershkoff-Stowe, & Samuelson, 2002). Individual
differences might also be usefully explained as dif-
ferences in training history, or as individual differ-
ences in generalization gradients, attentional
shifting rates or dimensional saliences (e.g. Dixon,
Koehler, Schweizer, & Guylee, 2000; Niedenthal,
Halberstadt, & Innes-Ker, 1999; Treat et al., 2001).
The phenomena reviewed above are consonant with
the general notions of attentional learning pro-
pounded here: attention focuses on features that
consistently indicate a category because doing so
facilitates learning of that category. When a con-
trasting category is presented, attention highlights
the consistently distinctive (diagnostic) features of
the new category, because doing so facilitates new
learning and protects previous knowledge.

For attentional theories to have broad applica-
bility to category learning, they must eventually
address more complex representational structures.
As an example of this need, Lassaline and
Murphy (1998) showed that people learn cate-
gories differently depending on whether the fea-
tures that differ across instances are ‘alignable’.
Alignable features are values from a common
dimension, e.g. red vs. green, whereas non-
alignable features are from different dimensions,
e.g. wing vs. branch. (Alignability is itself a
subtle psychological construct.) Current models of
attentional learning do not address the alignability
of dimensions. Even if this issue is sidestepped
for now, there are still debated questions about
how complex knowledge structures influence the
distribution of attention over dimensions. Some
researchers have argued that prior knowledge
does more than simply reallocate attention across
stimulus dimensions (e.g. Hayes & Taplin, 1995),
whereas other investigators have concluded that
background concepts and theories do influence
new learning through redistribution of attentional

weights (e.g. Vandierendonck & Rosseel, 2000).
Whether or not attentional redistribution, com-
bined with a variety of representational constructs,
can comprehensively accommodate the wealth of
phenomena in category learning, there is little
doubt that sophisticated theories of attention shift-
ing will play an important role in understanding
category learning.

SUMMARY

Categorization in its broadest definition is simply
the inference of unseen attributes from observable
features. The unseen attribute could be a category
label or some other characteristic of the item.
Because inference of appropriate action is perhaps
the fundamental goal of cognition, categorization
and category learning can be viewed as a core
research domain in cognitive science.

Different theories of categorization hypothesize
different representations. Various theories also
assume different processes for matching stimulus
representations and memory representations. Some
theories posit representations of content, such as
exemplars or prototypes. Other theories posit repre-
sentations of boundaries between categories. For
either type of representation, the specification can
be global or piecemeal. Once the representation is
established, then the theories can assume that the
matching of stimulus and memory representations
is done with a graded degree of match, or with a
strict match versus no match.

Research is moving toward the conclusion that no
one type of representation can accommodate the full
complexity of human category learning. The chal-
lenge facing researchers now is determining which
representations are used in what situations and how
the representations trade off in learning and infer-
ence. Theories are also moving away from simple
‘flat’ vector representations to more complex struc-
tured representations. Regardless of the representa-
tion, there is ample research showing the robust
influence of attention in category learning. Theories
will have to address how prior knowledge influences
attention which influences subsequent learning
which influences attention for future learning.

FURTHER READING

While writing this chapter, the author was fre-
quently tempted to give up and simply point the
reader to the many excellent previous summaries of
research in categorization. Perhaps that would have
been the better course of action! Here, then, are
some pointers to previous summaries of the topic.
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The book by Smith and Medin (1981) provides a
highly readable introduction to the issues in catego-
rization research. The collection of articles by
Rosch and Lloyd (1978) are classic statements of
fundamental results and theoretical perspectives.
The book by Shanks (1995) is a lucid review of
issues in associative learning in humans, and a
summary of associative learning in animals has been
written by Pearce and Bouton (2001). Estes (1994)
presents a more mathematically oriented survey of
theories of classification. An accessible collection of
tutorials is presented by Lamberts and Shanks
(1997), see also the review of concepts by Lamberts
(2000a), and Goldstone and Kersten (2003) provide
an excellent review of the field, all of which you
should probably read instead of this chapter.
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NOTES

1 ‘Wherever human life is concerned, the unnatural
stricture of excessive verticality cannot stand against more
natural horizontality’ (Frank Lloyd Wright on skyscrapers).

2 ‘Male’ and ‘female’ are clearly defined genetically in
virtually all individuals. There are extremely rare exceptions
for whom their chromosomes are neither XX (female) nor
XY (male). 

3 Mirman and Spivey (2001) described a mixture-
of-experts model similar to Erickson and Kruschke’s (1998,
2002; Kruschke & Erickson, 1994), in which the rule
module is instead a standard backprop network (Rumelhart
et al., 1986). The likely problem with Mirman and Spivey’s
approach is that the model will suffer the same problems as
standard backprop, as pointed out by Kruschke (1993).
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