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Abstract

Highlighting is a perplexing effect in learning, in which shared features are more

strongly associated with early learned outcomes but distinctive features are

more strongly associated with later learned outcomes. The effect has been

widely observed with different stimuli, procedures, and application domains.

It continues to discomfit many theories of learning. This chapter provides

results from a ‘‘canonical’’ design in which the base rates of early and late

outcomes are equalized. This balanced design yields data that pose a challenge

to models that have relied on differential base rates of past designs to mimic

highlighting. The data are available at the author’s Web site as a test bed for

models. A Bayesian data analysis is also reported that provides explicit poste-

rior distributions over choice probabilities. The posterior distribution is also

available online.
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1. Cue-Outcome Learning as a Window

on Cognition

It is easy for a person to learn that when ‘‘ocean’’ and ‘‘arrow’’ appear
on a computer screen, s/he should press the ‘‘F’’ key, but when ‘‘ocean’’
and ‘‘tulip’’ appear on the screen, s/he should press the ‘‘J’’ key. In a
standard learning procedure, a person sees the cue words, presses the key
s/he thinks is correct, and receives the correct outcome. After many
repetitions, accuracy improves. This procedure and the finding that people
are able to learn are, in a word, dull.

One fact that makes the exercise a little less dull is that cue-outcome
learning in the lab is a distillation of a type of high-stakes learning that
happens in real life. As examples: Physicians learn which symptoms indicate
deadly diseases, and stock brokers learn which financial markers indicate
times to buy or sell millions. If this sort of learning is to be understood by
cognitive scientists, they need to study it in simplified and controlled
laboratory experiments. Lab experiments can rarely impose consequences
such as bankruptcy or death, however. The innocuous and bland laboratory
procedures may therefore be described, in polite company, as less than
scintillating.

What elevates cue-outcome learning from the banal to the fascinating is
that people may learn, and respond to novel cues, in ways that are perplex-
ing, if not downright bizarre. Although learners have blazed mental path-
ways from cues to correct outcomes, those pathways may be so convoluted
that it is puzzling how humankind has blundered its way to the top of the
food chain.

This chapter focuses on one puzzling phenomenon in cue-outcome
learning, called highlighting. It is interesting because it violates (many) pre-
scriptions for what a rational learner should do, and it is interesting because it
deviates from what (many) learning theories can do. Highlighting is vexing
because it crashes the parties of many established learning paradigms, when
propriety would prefer to ignore it. But highlighting is also revealing,
forcing theorists to find mechanisms that can explain it. Once revealed,
the mechanisms may be seen to be fundamental aspects of learning, not just
bad behavior.

After a brief review of previous work on highlighting, the primary goal
of this chapter is to report new data from a ‘‘canonical’’ highlighting
experiment. It is hoped that these data can serve as a test bed for models
of learning. The data are available on the author’s Web page, and so is the
computer program for the experiment itself. The chapter also provides a
novel Bayesian analysis of the data, unlike previous reports. The Bayesian
analysis yields distributions of believable response propensities. These
posterior distributions are also available on the author’s Web page.
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The chapter concludes with a brief discussion of the continuing challenges
posed by highlighting for recent models of learning, including Bayesian
learning models.

2. Highlighting

2.1. The Phenomenon

Suppose a person initially learns that when ‘‘ocean’’ and ‘‘arrow’’ appear on
a computer screen, s/he should press the ‘‘F’’ key. The person subsequently
learns that when ‘‘ocean’’ and ‘‘tulip’’ appear on the screen, s/he should
press the ‘‘J’’ key. Notice that ‘‘arrow’’ is a perfect predictor of ‘‘F,’’ and
‘‘tulip’’ is a perfect predictor of ‘‘J,’’ whereas ‘‘ocean’’ is an imperfect
predictor. Thus, there is a symmetry between the two responses, each
having a unique perfect predictor, and sharing an imperfect predictor.
Given this simple symmetry, it is reasonable to assume that the person
learned the symmetry. This assumption can be assayed by testing the person
with the single cue word ‘‘ocean.’’ If the cue has been appropriately learned
to be an equally imperfect predictor of the two outcomes, then the person
should respond equally with the outcomes. Across many learners, however,
there is a strong tendency to prefer the early learned ‘‘F’’ outcome. Unfor-
tunately for learning theorists, this preference cannot be trivially explained
as a generic primacy bias in response to ambiguous cues, because when
learners are presented with the ambiguous cue combination ‘‘arrow’’ and
‘‘tulip,’’ there is a strong preference for the later learned ‘‘J’’ outcome.

The phenomenon occurs for a variety of cues and outcomes and is
not restricted to cues as words and responses as letters. Therefore, the
cue-outcome structure is here redescribed with generic notation, abstracted
from any irrelevant concrete instantiation. Early in training, the learner
experiences cases of cues PE and I together indicating outcome E. This
case is denoted I.PE ! E. This case is trained until the learner knows it
well. Then the learner is trained with cases of I.PL ! L, in which cue PL
and outcome L have not been previously trained. Notice that the cue
structure is symmetric: Each outcome has a single perfectly predictive cue
and the outcomes share the cue I. The only difference is that outcome E is
trained early, and outcome L is trained late. Thus, cue PE is a perfect predictor
of the early outcome, and cue PL is a perfect predictor of the later outcome,
while cue I is an imperfect predictor. Interspersed training of I.PE ! E and
I.PL ! L continues until both are learned well. Near-perfect accuracy is
not difficult to attain. After training, when probed with cue I by itself,
people are not impartial, instead strongly preferring outcome E. On the
other hand, when presented with the cue pair PE.PL, people strongly prefer
outcome L.
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This torsion in people’s preferences, going one way for I but twisting the
opposite way for PE.PL, is called the ‘‘highlighting’’ effect. The appellation
derives from two sources. First, highlighting refers to a theoretical interpre-
tation of the empirical effect. In this interpretation, cue PL is attentionally
highlighted during the learning of the cases I.PL ! L. When experiencing
I.PL ! L, learners shift attention away from cue I, which is already
associated with outcome E, toward cue PL. This theory will be explained
more thoroughly later. The second motivation for the name ‘‘highlighting’’
is to juxtapose the empirical finding as complementary to the classic
‘‘blocking’’ phenomenon in associative learning (Kamin, 1968; Shanks,
1985), which can be at least partially explained by learned inattention to a
cue, as opposed to learned highlighting of a cue (Kruschke, 2003b; Kruschke
& Blair, 2000). Blocking will also be described in more detail later.

2.2. Highlighting Discomfits Theories of Learning

The highlighting effect is curious because people appear to have learned an
asymmetrical cue-outcome structure despite the simple symmetry in the
environment. What makes the phenomenon deeply interesting, however, is
that most theories of learning cannot explain it.

Simple associative theories such as theRescorla–Wagnermodel (Rescorla&
Wagner, 1972) predict that after sufficient training, the associativeweights reach
asymptotic values that are symmetric. This symmetry emerges over several trials
of later intermixed training. The initially learned association from I to E is
reduced by subsequent cases of I.PL ! L, because I has thereby occurred
without E. The initially moderate association from PE to E increases when
cases of I.PE ! E recur, because cue I no longer predicts E very strongly.
Eventually, theRescorla–Wagnermodel accurately learns the symmetry, unlike
people, who persist in the asymmetry even after fairly extended training.
(Markman (1989) provides an alternative proof.)

Associative models that adjust cue salience or learning rates according to
the novelty of the cues also fail to capture the effect. For example, a model
was proposed by Shanks (1992) in which the salience of each cue is inversely
proportional to a running estimate of its base rate. In other words, rare cues
are more salient than frequent cues. While it is quite plausible that some
form of novelty salience is at work in learning, and no doubt some
phenomena do demand such a mechanism for adequate explanation, the
particular mechanism in the proposed model does not account for effects
closely related to highlighting (Kruschke, 1996). The novelty-salience
model has not yet been fit to the new data reported in this chapter, but
the model would probably have difficulty because, in the new experiment,
what is initially a rare cue becomes a frequent cue, and vice versa.

Other variations of associative models set the learning rates of expected-
but-absent cues to negative values (Markman, 1989; Tassoni, 1995; Van
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Hamme & Wasserman, 1994). It is plausible that absent-but-expected cues
are represented as explicitly absent in human learning, and perhaps some
phenomena do demand such a representation for adequate explanation. But
highlighting is not accounted for by these models. One difficulty with some
of these models is that they do not propose a specific mechanism by which
cue expectations are learned. Even when such mechanisms are specified, the
new data presented in this chapter pose challenges for the models, because
the long-run symmetry of the design (to be described later) implies that the
absence of PE in I.PL trials may trade off symmetrically with the absence of
PL in I.PE trials.

Various Bayesian models of learning fail to capture the effect. Several
Bayesian models, such as the rational model (Anderson, 1990, 1991), the
Kalman filter (Dayan, Kakade, & Montague, 2000), and sigmoid-belief
networks (Courville, Daw, Gordon, & Touretzky, 2004), assume that all
instances, regardless of their time of occurrence, are equally representative
of the underlying cue-outcome association. In other words, the models are
not sensitive to trial order, and, in particular, they cannot show highlighting
(Daw, Courville, & Dayan, 2008; Kruschke, 2006b, 2006c).1 These models’
insensitivity to trial order is not a necessary shortcoming of all Bayesian
models, however. These particular models ignore time (or trial) merely as a
convenient mathematical simplification. Future Bayesian models might
explicitly incorporate temporal dependencies.

Another approach is to try to explain highlighting as an inference during
responding at test, rather than as an asymmetry during learning. The
eliminative inference model (ELMO; Juslin, Wennerholm, & Winman,
2001; Winman, Wennerholm, & Juslin, 2003) is based on the idea that
the test probe PE.PL is recognized to be an unknown cue combination, and
therefore known outcomes can be eliminated. If outcome E is well known,
but outcome L is not, then E is eliminated and response L is preferred. Test
probe I, on the other hand, is similar enough to learned rules that the known
outcome E is evoked. There is good evidence that people do use some form
of eliminative inference in some situations ( Juslin et al.; Kruschke &
Bradley, 1995). Unfortunately, it cannot account for highlighting. In par-
ticular, eliminative inference does not apply when all outcomes are well
learned, but highlighting still occurs robustly in human preferences. Various
details of response preferences are not captured by the ELMO model
(Kruschke, 2001b, 2003a).

1
The Kalman filter has a dynamic process that is sensitive to trial order, but the published versions of this
mechanism do not account for highlighting (Daw et al., 2008; Kruschke, 2006b). And unlike the associative
weights, the dynamic process parameters in the standard Kalman filter do not learn from training, but are
fixed in advance. The rational model (Anderson, 1990, 1991) uses approximations that produce trial-order
sensitivities, but these do not mimic highlighting (Kruschke, 2006b, 2006c).
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The point of this section is merely to claim that the highlighting
phenomenon is truly perplexing for many models of learning. There is
not space here to thoroughly review all the contending models and the data
that disconfirm them. The various references cited above provide many
gory details of models impaled upon spikes of data.

2.2.1. Highlighting Is Explained by Attention Shifting
If all those theories do not explain highlighting, what does? A key insight
was provided by Medin and Edelson (1988) (see also Medin & Bettger,
1991), who suggested that when learning I.PE ! E, both cues are learned
as moderately strong predictors of outcome E. Then, when learning
I.PL ! L, attention shifts away from cue I toward cue PL, and a strong
link from PL to outcome L is acquired. Attention shifts away from cue I
when learning I.PL ! L because attention to cue I produces the wrong
response, namely, outcome E.

A series of models that formalize attention shifting has been created by
Kruschke (1996, 2001b, 2001c, 2006c) and extended to continuous stimuli by
Kalish and Kruschke (2000; Kalish, 2001). The general framework of the
models is displayed in Figure 1. Each cue has a multiplicative attentional gate,
indicated in Figure 1 by triangles impinging upon the upward flow of cue
activation. When attention on a cue is zero, then the cue activation is
squelched. Each cue recruits some attention by its mere presence, but there
can be competition for attention if there are multiple cues. A key aspect of the
framework is that cue-outcome learning is actually indirect via twomappings:
There is a learned mapping from cues to attentional allocation across the cues,
and there is a learned mapping from attended cues to outcomes. These two
distinct mappings are suggested by the curved arrows Figure 1.

The environment specifies which cues are present and which outcome is
correct, but the environment does not specify how to allocate attention

Cues

General framework

Attentional shift
before learning

Attention

Outcomes

Learned
mapping

Learned
mapping

Figure 1 General framework for models of attentional shifting and learning.
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across the cues. The models allocate attention to maximize the accuracy of
the predicted outcome. In error driven, connectionist implementations of
the framework (Kruschke, 1996, 2001b, 2001c), attention shifts away from
cue I during the learning of I.PL ! L because doing so reduces error. This
attentional shift facilitates rapid acquisition of I.PL ! L and reduces inter-
ference with the previously learned mapping I.PE ! E. On a given trial,
after attention has been shifted, then there is learning of the mappings from
the presented cues to the attentional allocation, and from the attended cues
to the outcomes. Attentional shifting and learning demonstrably improve
performance on both early and late cases (Kruschke, 2003a).

In Bayesian implementations of the framework (Kruschke, 2006b,
2006c), attention shifts away from cue I during learning I.PL ! L because
doing so reduces inconsistency with the previously learned belief that cue I
is associated with outcome E. After attention has been shifted on a given
trial, the mappings are learned from the presented cues to the attentional
allocation, and from the attended cues to the outcomes. In the Bayesian
implementation, learning of a mapping entails shifting belief away from
candidate mappings that are inconsistent with the training items, toward
candidate mappings that are consistent with the training items (for an
introduction to Bayesian associative learning, see Kruschke, 2008). Because
of the attention shifting, this architecture for Bayesian learning robustly
exhibits highlighting. An advantage of this Bayesian scheme over the
connectionist models is that it can also exhibit phenomena known as
‘‘retrospective revaluation’’ (e.g., backward blocking, unovershadowing,
etc.; see Kruschke, 2006c), which are very challenging to connectionist
models but are naturally accommodated by Bayesian systems.

Because Bayesian learning of each mapping in Figure 1 is influenced
only by its local information, the approach is called ‘‘locally’’ Bayesian
learning. This learning scheme is different from standard Bayesian
approaches in which both mappings are represented jointly in a global
hypothesis space (e.g., Neal, 1996; Rumelhart, Durbin, Golden, &
Chauvin, 1995). Globally Bayesian models do not exhibit highlighting
because they are not sensitive to trial order. The locally Bayesian model is
sensitive to trial order because the internal attentional targets, generated on a
given trial to be least inconsistent with current beliefs, depend on previous
learning.

Locally Bayesian learning is motivated generally by the idea that different
levels of analysis may be Bayesian. Individual neurons might be Bayesian
learners (e.g., Deneve, 2008), or committees of people might be Bayesian
learners (cf. Akgün, Byrne, Lynn, & Keskin, 2007). Theories of mind
typically posit numerous component processes, any of which could be
Bayesian learners. For a mind to be globally Bayesian, it would have to
keep track of all possible combinations of all possible states within and across
components. This might be possible with clever algorithms, but it is more
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plausible to assume that each component keeps track of only its own
possible states, and undergoes only locally Bayesian learning.

Another interesting behavior of locally Bayesian learning, when applied
to highlighting, is that it learns faster than globally Bayesian learning
(Kruschke, 2006c, p. 688). The retardation in the globally Bayesian system
occurs because the global system must dilute its beliefs over a large number
of possible joint hypotheses, and this uncertainty produces less decisive
responses during learning.

In summary, the main point is that attention shifting is adaptive: Atten-
tion shifting accelerates acquisition of novel cases, and attention shifting
preserves previous knowledge. The phenomenon of highlighting is a
behavioral signature of this adaptive process. Highlighting is not an acci-
dental deficiency in an otherwise well-tuned learning system. Highlighting
is a direct consequence and sign of learning well.

2.3. Highlighting Is Robust, Pervasive, and Consequential

The claim, that highlighting is sign of learning well, is bolstered by the fact
that it shows up in many places. It is not to be dismissed as a quirk, occurring
by accident only in obscure and contrived conditions that have little
relevance to most learning. The phenomenon is, in fact, robust and
pervasive. And it has consequences predictable from attentional theory.

2.3.1. Robust
The effect persists under a variety of relative base rates, changes in base rates
during training, different numbers of copies of the basic structure, different
numbers of imperfect or perfect predictors, and so forth. For example, the
designs of Medin and Edelson (1988) used three copies of the basic struc-
ture, but the designs of Medin and Bettger (1991) used four copies of the
basic structure, and the designs of Kruschke (1996) used two copies. Robust
highlighting was obtained in all the designs.

As another example, Medin and Edelson (1988, Experiment 2) reported
a design in which one copy of the highlighting structure involved two
shared predictors (I1.I2.PE ! E, I1.I2.PL ! L), a second copy had only
one shared predictor but two perfect predictors for each outcome
(I.PE1.PE2! E, I.PL1.PL2 ! L), and a third copy had no shared predictors
(PE1.PE2.PE3 ! E, PL1.PL2.PL3 ! L). As anticipated by attentional the-
ory, the magnitude of highlighting depended on the number of shared
predictors. Kruschke (2001b, Experiment 1) also showed that a shared
predictor was essential for producing highlighting, using a design with
only two cues per outcome and only two copies of the basic structure.

Some researchers have used more extreme differential base rates than
used in the original experiments by Medin and Edelson (1988). For example,
Shanks (1992) and Juslin et al. (2001) used 7-to-1 base rates (instead of 3-to-1)
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and observed highlighting. The more extreme base-rate ratio could produce a
stronger highlighting effect, presumably because it more strongly ensured that
one outcome is well learned before the other outcome is learned.

Medin and Bettger (1991) explored changes in relative base rates during
training. As long as one outcome had higher base rate than the other during
initial training, thereby causing the high base-rate case to be learned before
the low base-rate case, then the highlighting effect was observed.
Subsequent designs have used only two copies of the basic structure, both
changing base rates at the same time, and again found strong highlighting
(Kruschke, 2001b; Kruschke, Kappenman, & Hetrick, 2005).

Across all these variations in design, the essential features seem to be that
(i) one outcome is learned before the other outcome, (ii) the shared cue is
associated with the early outcome, and (iii) the later learned outcome is well
learned by test time. These design aspects are distilled into a ‘‘canonical’’
design described later in this chapter. An emphasis of the canonical design
will be that highlighting does not depend on differential base rates overall;
instead, the essential requirement is that one outcome is well learned before
the other outcome is learned.

Various experiments have used different stimuli or cover stories or
procedures. For example, in unpublished research conducted in 2001 by
Kruschke with collaboration of an undergraduate honors student named
Nancy Aleman, participants were instructed that they were to learn about
the qualities of whitewater rafts. This knowledge could be used for decisions
about which rafts to rent or purchase. Learners browsed 20 Web pages to
learn about the rafts currently available on the market. Figure 2 shows an
example of a Web page seen by the learners. Two features of the raft are
given prominence in the display, along with the quality rating. The instance
in Figure 2 features ‘‘Lateral Valves’’ and ‘‘Hexagonal Aircells,’’ with a
‘‘High’’ quality rating. These attributes might correspond to abstract cue I,
cue PE, and outcome E, respectively. Additional text reiterates the features
and quality in prose that was intended to imitate catalog sales descriptions.
Notice that the pages did not require any explicit quality prediction for each
case; learners merely read the information on the page. Participants selected
whatever page they wanted to inspect next by selecting it from among the
array of raft names at the bottom of the page. If a participant systematically
selected rafts in reading order, that is, left to right and top to bottom, then they
would encounter I.PE ! E cases before I.PL ! L cases. Most subjects did
spontaneously select rafts in that order. Across all 20 pages, there were an equal
number of E and L cases. After viewing all 20 pages, learners then viewed a few
pages that purported to show prototypes of rafts that manufacturers were
considering bringing to market. Participants predicted the quality of each
raft based on the features of the raft. Results showed a strong highlighting
effect in predicted quality: Rafts with the imperfectly predictive feature were
given the earlier learned quality, and rafts with a combination of the two
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perfectly predictive features were given the later learned quality. These results
show that overt predictive learning is not necessary for highlighting, nor is an
austere ‘‘cues only’’ display.

Pictorial stimuli with joystick responses were used by Fagot, Kruschke,
Dépy, and Vauclair (1998). Simple geometric figures, such as an oval or
rectangle, were used to instantiate cues. The learner initiated a trial by
using a joystick to move the cursor to the center of the screen. The cue
figures would appear on the left or right of the screen. The learner made a
response by moving the cursor to one of two colored squares that were
positioned vertically above or below the start box. Learners were told
merely to figure out which box to move to, in response to the various
figures. The results again showed robust highlighting. Lamberts and Kent
(2007, described in more detail below) also used pictorial stimuli and
found robust highlighting. Although the stimuli might have been covertly
named by the learners, these results show that textual stimuli are not
necessary for highlighting to occur.

The effect has been found with socially relevant stimuli such as person-
ality traits and group membership (Sherman et al., 2009; Wedell &
Kruschke, 2001). In one design, Wedell and Kruschke (2001) trained
people to predict a (fictitious) person’s identity from his personality

Figure 2 Example of stimulus used for assaying highlighting in browsing a catalogue
of whitewater rafts.
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attributes. For example, the abstract case I.PE ! E was instantiated
as ‘‘honest’’ and ‘‘conventional’’ indicates ‘‘Fred,’’ and the abstract case
I.PL ! L was instantiated as ‘‘honest’’ and ‘‘materialistic’’ indicates
‘‘Jack.’’ The shared trait, ‘‘honest,’’ is known from previous norms to be a
positive trait, while the distinctive traits, ‘‘conventional’’ and ‘‘materialis-
tic,’’ are known to be equally negative traits. After learning to predict the
person names from the traits, participants were asked to rate the likeability
of each person. Presumably the rating of likeability is based on how strongly
the traits have been associated with each person. If the traits were asymmet-
rically highlighted during learning, then the later learned person should be
more strongly associated with the distinctive negative trait, and the earlier
learned person should be more strongly associated with the shared positive
trait. The actual likeability ratings confirmed this prediction, with the early
learned person being rated more likable than the later learned person.
Notice that ratings of likability use associations from outcomes (the person
name) to cues (the traits), rather than from cues to outcomes, which suggests
that the highlighting effect is caused by asymmetries in associations, not
purely by biases at test.

The highlighting effect is modulated by cue salience, as anticipated by
attentional theory. Continuing from the previous paragraph with the
example of trait-name learning, Wedell and Kruschke (2001) found that if
both the PE and PL traits were equally negative or equally positive, then a
typical magnitude of highlighting was obtained. Previous literature strongly
suggests that negative traits are more salient than positive traits. In other
words, negative traits should attract attention more than positive traits.
Consistent with this prediction, Wedell and Kruschke (2001) found that
highlighting was magnified when the PL trait was negative while the PE
trait was positive, and highlighting was diminished when the PL trait was
positive while the PE trait was negative. Analogously, Bohil, Markman, and
Maddox (2005) found that a highlighting-like effect could be generated if
one distinctive cue were more salient than the other distinctive cue, even
when the two outcomes were learned contemporaneously.

In a cued-recall paradigm, effects exactly analogous to highlighting were
obtained by Dennis and Kruschke (1998). Learners saw two words such as
‘‘digit’’ and ‘‘album’’ at the top of a computer screen for 2 s, and were
instructed to covertly anticipate the word, such as ‘‘shark,’’ that would
appear after a pause at the bottom of the screen. Learners simply watched
a sequence of such trials before a test phase in which words appeared at the
top of the screen and the anticipated word had to be typed on the computer
keyboard. This procedure is interestingly different from the standard pre-
dictive-learning paradigm. First, there is no explicit feedback regarding the
correctness of the covertly anticipated response during learning. Second,
there is no cover story relating the cues to the outcomes, and no causal
relationship such as that between diseases and symptoms (used in previous
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research by Kruschke, 1996; Medin & Bettger, 1991; Medin & Edelson,
1988). Third, and perhaps most importantly, the response in the test phase is
not limited to the words seen as outcomes during learning, because parti-
cipants could type in any word at all, including the cue words or any other
word that came to mind. Despite these differences, the test results were
remarkably consistent with the results from previous predictive-learning
experiments, revealing robust highlighting. Thus, forced choice at test is not
required for highlighting to occur.

The highlighting effect is also robust under time pressure and a dual task
during test. After training with pictorial stimuli in a design using fixed
3-to-1 base rates, Lamberts and Kent (2007) tested participants in four
different conditions. One test condition allowed the usual unpressured
response. A dual-task condition had subjects simultaneously counting
quickly backward in multiples of three during the test responses. Two
other conditions demanded responses be given within 500 or 300 ms.
The signature torsion of highlighting was clearly obtained in all four test
conditions, merely somewhat attenuated in the speeded conditions.
Lamberts and Kent (2007) argued that the robustness of highlighting
under time pressure and a dual task made it unlikely that highlighting can
be fully explained by inferential rules executed at time of test, because rule
application should be disrupted by those additional cognitive demands.

2.3.2. Highlighting Is Correlated with Blocking and Gaze
Learning in other cue-outcome designs should also be affected by atten-
tional shifting. One such design, known as ‘‘blocking’’ (Kamin, 1968;
Shanks, 1985), trains people in an early phase with cases of A ! 1, then
in a later phase with cases of A.B ! 1. In other words, the later phase
introduces a perfectly predictive cue which is redundant with an already
learned cue. As a comparison, the later phase also has cases of C.D ! 2,
without any earlier training of cues C or D. In test, the redundant cue is put
in conflict with a comparison cue: B.D ! ? People prefer outcome 2,
which suggests that learning about cue B was attenuated, or ‘‘blocked,’’
because of the previous learning about cue A.

One explanation of blocking is that it is caused, at least in part, by learned
inattention to the blocked cue (e.g., Kruschke & Blair, 2000; Mackintosh &
Turner, 1971). The idea is that during learning of A.B ! 1, cue B distracts
attention away from the already predictive cue A. This distraction causes
diminished accuracy. To alleviate the error, attention is redirected back to
cue A, away from cue B. Thus, people learn to suppress attention to cue B.

Because the same attentional shifting process is supposed to be at work in
both blocking and highlighting (but yielding complementary effects), the
effects should be correlated. In other words, a person who has especially
strong attentional shifting should show relatively strong blocking and
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highlighting, but a person who has relatively small attentional shifting
should show a lesser degree of blocking and highlighting.

This predicted correlation was verified by Kruschke et al. (2005). People
were trained on both blocking and highlighting designs, and magnitudes of
blocking and highlighting were estimated for each person from their choice
preferences at test. Across people, there was a significant positive correlation
between blocking and highlighting.

The correlation of blocking and highlighting is another challenge to
models of the phenomena. The attentional shifting and learning model of
Kruschke (2001c) was shown to accommodate the correlation (Kruschke
et al., 2005). Specifically, when the attentional parameters of the model are
varied, to mimic individual differences in attentional shifting, the model
naturally predicts covarying magnitudes of both blocking and highlighting.
Importantly, variations in other parameters, such as associative learning rates
or choice decisiveness, do not account for the covariation. Other models
have difficulty addressing this correlation.

Attentional theory asserts that covert attention is directed at the high-
lighted cue. If overt eye gaze reflects covert attention, then gaze should
dwell for longer duration on highlighted cues and for shorter duration on
blocked cues. This prediction was confirmed by Kruschke et al. (2005).
Figure 3 shows an example of a gaze trajectory on a single trial, where the
clusters of dots indicate places where the eyes fixated. Moreover, individual
measures of differential gaze durations correlated with differential choice
preferences. In other words, people who showed stronger blocking and
highlighting in their choice preferences tended to show greater differences
in gaze durations for blocked or highlighted cues. The correlations between
choice preferences and gaze differences, and between blocking and high-
lighting, are shown in the lower part of Figure 3. Although the correlation
of choice and gaze is not a necessary prediction of attentional theory,
because it is based on the additional assumption that overt gaze follows
covert attention, the correlation of blocking and highlighting is a fairly firm
prediction, qualified only by the independent variation induced by other
influences.

2.3.3. Learning After Highlighting
Attentional theory posits that learners rapidly reallocate attention across cues
when the default allocation causes inaccurate prediction. This idea is anno-
tated in Figure 1 as ‘‘Attentional shift before learning.’’ A further premise is
that people learn these reallocations of attention, so that on subsequent
repetitions of the same cues, attention can be more appropriately appor-
tioned and yield more accurate responses. This idea is annotated in Figure 1
as ‘‘Learned mapping’’ from cues to attention.

If attentional allocations are learned in highlighting and blocking, then
the learned allocations should take time to overcome if the cue-outcome
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mapping changes in subsequent training. Specifically, if people have learned
to ignore a blocked cue, then learning a new association from the blocked
cue should be relatively difficult in subsequent training. This prediction was
confirmed in different experiments reported Kruschke and Blair (2000) and
Kruschke (2005).

Moreover, if people have learned to attentionally highlight cue PL in the
highlighting design, then it should be difficult to ignore the highlighted cue
if it becomes irrelevant in subsequent training. This prediction was also
confirmed by Kruschke (2005). The experiment trained people in a typical
highlighting design and then continued training with new outcomes. For
both of two groups of learners, the new outcomes were perfectly indicated
by the cues that had been the imperfect I cues during highlighting. For one
group of learners, the I cues were accompanied by the PE cues, which were
randomly paired with the novel outcomes, but for the other group of
learners, the I cues were accompanied by the PL cues, again randomly
paired with the novel outcomes. If there was stronger learned attention to
the PL cues than to the PE cues, then learning to ignore the newly irrelevant

Blocking choice Highlighting choice

r = .481 r = .314

r = .385

r = .382

Blocking gaze Highlighting gaze

Figure 3 Top: Example of a gaze trajectory in experiment by Kruschke, Kappenman,
and Hetrick (2005). Each dot indicates gaze location as sampled at 1/60 s, with lines
connecting consecutive locations. The trajectory begins with the dots near the center
over the instructions, moves up to the dots over the cue words at the top of the display,
and then moves down to the dots over the response button that was clicked with the
screen cursor. Bottom: Correlations, across individuals, of magnitude of blocking or
highlighting, assayed by choice or gaze preference.
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PL cues should be more difficult than learning to ignore the newly irrele-
vant PE cues. This difference in learning difficulty was in fact observed in
the data.

2.3.4. Highlighting with Continuous Cues and Outcomes
The previous sections discussed experiments in which the cues were present/
absent features, such as words or geometric figures. In the real world, cues can
instead have continuous magnitudes, not just binary discrete states. In recog-
nition of these alternative cue instantiations, some researchers have sought
effects analogous to highlighting with continuous cues, and even continuous
outcomes.

Kalish and Kruschke (2000) considered continuous-dimension stimuli
with categorical outcomes. The cue-outcome structure was not intended as
a direct analogue of highlighting, but was intended to examine shifts of
attention among values within a dimension. The hypothesis was that early
learned stimuli would be encoded in terms of their typical, average values.
Later learned stimuli, of different categories, would be encoded by more
extreme stimulus values, because those extreme values would help discrimi-
nate the new category from the previously learned one. A model was devel-
oped that incorporated attentional shifts across dimensions, but also attentional
shifts across values within dimensions. The model was able to mimic some
subtle effects in people’s choice preferences across the continuum of stimulus
values, but those subtleties could not be captured when the attention shifting
in the model was disabled.

Kalish (2001) considered a design directly analogous to highlighting, in
which the present/absent values of the standard experiment were instan-
tiated as two different values on a continuum; such as short and tall heights
of a vertical bar. In different experiments, the heights had different amounts
of random noise added. When the random variation did not cause cate-
gories to overlap in stimulus space (i.e., when there was a deterministic
mapping from stimuli to outcomes), highlighting was obtained. Kalish
modeled the results with an extension of the attention-shifting model
presented by Kalish and Kruschke (2000).

When both the cues and outcomes are continuously valued, the design
falls into the realm of ‘‘function’’ learning. This appellation in the literature
is apparently based on analogy to high-school mathematics, wherein map-
pings from continuous x to continuous y, such as lines and higher order
polynomials, are the prototypical functions. If function learning and dis-
crete-outcome learning are related, it is plausible that attentional shifts
should occur during function learning. Suppose, for example, that cues I,
PE, and PL are instantiated as continuous valued dimensions, such as body
temperature, grade point average, and hair length. People are trained early
with cases in which small values of I and PE lead to small values of the
outcome, and other cases in which large values of I and PE lead to large
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values of the outcome. Thus, the I and PE values covary across trials and
indicate correspondingly covarying outcome values. Later in training, peo-
ple are trained with cases in which values of I and PL covary, but the
outcome is negatively correlated with the cue values. In other words,
the function relating I.PE cases to the outcome is positive linear, but the
function relating I.PL cases to the outcome is negative linear. If attentional
highlighting occurs, then, when tested with cue I by itself, people should
prefer to give positive linear responses, but, when tested with cues PE.PL,
people should prefer to give negative linear responses. This pattern of
responding was in fact observed in an experiment reported by Kruschke
(2001a). The analogous result for blocking was also found.

In summary, highlighting does not seem to be limited to discrete cues
and outcomes. Although there has been relatively little investigation
of highlighting with continuous cues, it seems advisable that theories of
highlighting should be extendible, in principle at least, to continuous cues
and outcomes.

2.3.5. Possible Sightings Afield
A variety of phenomena in other domains have been addressed by atten-
tional theories much like the one that accounts for highlighting. These
phenomena tend to share two main qualities. First, learning of new items
can be fast. This rapidity can be explained, at least in part, by the ability of
attention to focus on distinctive features or representations that reduce
interference with previously learned items. Second, learned knowledge
can be distorted relative to the actual stimulus statistics. This distortion
also can be explained, at least in part, as the consequence of selective
attention that is differently tuned for different items at different points of
learning. These ideas have been applied to aspects of language acquisition
(Colunga & Smith, 2008; Ellis, 2006; Goldberg, Casenhiser, & Sethuraman,
2005; Parish-Morris, Hennon, Hirsh-Pasek, Golinkoff, & Tager-Flusberg,
2007; Regier, 2005; Smith & Yu, 2008; Yoshida & Hanania, 2007),
consumer learning (Cunha, Janiszewski, & Laran, 2008; Cunha & Laran,
2009; Kruschke, 2006a; Pieters, Warlop, & Wedel, 2002; van Osselaer &
Janiszewski, 2001), context cues in learning (Nelson & Callejas-Aguilera,
2007; Rosas & Callejas-Aguilera, 2006; Rosas, Callejas-Aguilera, Ramos-
Álvarez, & Abad, 2006), and learning in social cognition (e.g., Cramer et al.,
2002; Hayes, Foster, & Gadd, 2003; Sherman et al., 2009; Wedell &
Kruschke, 2001), among others. There is not space here to discuss all
these connections to the literature, but it is hoped that these pointers are
suggestive of the potential scope of highlighting in learning.
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2.4. Interim Summary and Goal of Remainder

In summary, the highlighting effect has been found with a variety of stimuli,
cover stories, stimulus frequencies, and cue combinations. It is correlated
with blocking, and it has predictable consequences for subsequent learning.
Highlighting is not merely a stubborn deficiency of otherwise rational
learning; rather, highlighting is adaptive because it reduces interference
with previous knowledge and accelerates acquisition of new knowledge.
The style of attentional theory that explains highlighting has been applied in
a variety of domains. Thus, the highlighting phenomenon is among the
catalog of major phenomena that learning theories need to address. Other
researchers agree: ‘‘Because [highlighting] is so problematic, we will argue
that the effect goes to the heart of several important issues in human learning
and decision making’’ ( Johansen, Fouquet, & Shanks, 2007, p. 1366).

The primary goal for the remainder of this chapter is to present new
results from a ‘‘canonical’’ highlighting experiment that may serve as a test
bed for models of learning. In a canonical design, the overall frequencies of
the early and late cases are equal. In other words, there is no overall
difference in base rates. The canonical design also has an initial phase in
which the early cases are trained without any interspersed late cases, thereby
guaranteeing that the early cases are actually learned before the late cases.
One purpose of this canonical design is to demonstrate unambiguously that
the highlighting effect does not depend on overall differences in bases rates;
that is, the highlighting effect is not (only) an inverse base-rate effect,
because there are no overall base rate differences to invert. Another purpose
of the canonical design is provide concrete data that challenge models that
rely on differential base rates to account for the highlighting effect. Such
models include some recent Bayesian approaches, including the Rational
model (Anderson, 1990, 1991) and the Kalman filter model (Dayan et al.,
2000; Kruschke, 2008). Finally, the data are analyzed using Bayesian
methods, unlike all previous reports in the literature. The hierarchical
Bayesian analysis allows for individual differences, and it provides a
complete posterior distribution of credible response preferences.

3. Experiment: A ‘‘Canonical’’ Design with

Equal Base Rates

A framework for a ‘‘canonical’’ design for highlighting was suggested
by Kruschke (2006c, Table 1, p. 686). The design is guided by three
motivations. First, some exposures to I.PE ! E should occur initially, so
that it is definitely learned first. Second, the total number of cases of I.PE! E
should equal the total number of cases of I.PL ! L. Third, aside from the
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initial training, the relative base rates should never be too extreme, because
people should be learning about the cases in relation to each other. The 3-to-
1 base rates established by Medin and Edelson (1988) and by Medin and
Bettger (1991) were used as a guideline.

Table 1 shows a canonical highlighting design. It has three phases of
training. The first phase presents only cases of I.PE ! E, to ensure that at
least some learning of the early cases does happen before the later cases.
A block of the first phase involves two repetitions of I.PE! E, and there are
N1 blocks. The second phase introduces the cases of I.PL ! L, but at only
one third the frequency of the early cases. There areN2 blocks of the second
phase. The third phase reverses the base rates, emphasizing the later learned
cases. The third phase has N3 blocks. Within all blocks, the trials are
permuted randomly. The blocks progress seamlessly without any marker
between blocks.

Notice in the table that when N3 = N2 þ N1, the total number of
I.PE ! E trials is 3 N1 þ 4 N2, which equals the total number of I.PL ! L
trials. This equality of base rates distinguishes highlighting from the inverse
base rate effect reported by Medin and Edelson (1988), which used only the
second phase of Table 1, i.e., N1 = 0 and N3 = 0. One possible infelicity of
the canonical design proposed here is that training ends with one outcome
occurring more often than the other, and this short-term imbalance in favor
of the later trained outcome may carry over into the test items. To solve this
problem, a fourth training phase could be appended (still before the test phase)
in which the two cases are interspersed with equal frequency. Such a candi-
date fourth phase was not used here for two reasons. First, the test phase
includes continued interspersed training with equal base rates, as shown
Table 1, albeit with only a modest number of repetitions. Second, Medin
and Bettger (1991, Experiment 2) showed that training with equal base rates
after an initial phase with 3-to-1 base rates still produced the signature torsion
of highlighting.

Table 1 A Canonical Highlighting Design.

Phase # blocks Item � Frequency

First N1 I.PE ! E � 2

Second N2 I.PE ! E � 3 I.PL ! L � 1

Third N3 = N2 þ N1 I.PE ! E � 1 I.PL ! L � 3

Test 2 I.PE ! E � 2 I.PL ! L � 2

I ! ? � 1 PE.PL ! ? � 1, etc.

Note: An item is shown in the format, Cues ! Correct Response � frequency per block. The actual
experiment has two copies of the structure shown here; for example, the first phase involves I1.PE1 !
E1 � 2 and I2.PE2 ! E2 � 2.
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Medin and Bettger (1991) reported experiments in which one subset of
the cue-outcome pairs had balanced frequencies, corresponding with
N1 = 0, N2 = 6, and N3 = 6. The canonical design instead has N1 > 0
to assure that the early items really are learned before the later items. The
designs used by Medin and Bettger (1991) also interleaved learning of
balanced structures with imbalanced structures, leaving open the possibility
that learning of an imbalanced structure influenced the learning of a
balanced structure.

The canonical design does not require the number of blocks to be fixed
in advance. Instead, training can continue in the first and second phases until
an accuracy criterion is reached. For example, training in phase 1 could
continue until accuracy achieves 11/12 in a window of three consecutive
blocks (as was done by Kruschke, Kappenman, & Hetrick, 2005), and
training in phase 2 could continue until accuracy on the later items achieves
5/6 in a window of three consecutive blocks. With the number of blocks in
the first two phases, N1 and N2, established by the subject’s achievement
of criterial accuracy, the number of blocks for the third phase is set as
N3 = N1 þ N2, thereby achieving overall balance of base rates while also
assuring early learning of one case and high accuracy overall. Moreover, by
using an accuracy criterion, the framework of the design can be applied to
different stimuli, situations, and subjects, in which or for whom learning
may be more or less difficult. The experiment reported below, however,
used a fixed number of blocks, merely to maintain consistency with
previously reported experiments.

The equality of base rates in the canonical design emphasizes that
highlighting is an order-of-learning effect, not a base rate effect. It is only
by virtue of the fact that the I.PE cases are learned before the I.PL cases that
asymmetric responding occurs at all. If the I.PE and I.PL cases were
intermixed equally throughout training, they would be structurally equiva-
lent and no such highlighting effect could be meaningfully assayed (except
for idiosyncratic differences in acquisition order by individual subjects).

3.1. Method

3.1.1. Design
The canonical design of Table 1 was used withN1 = 10 andN2 = 5. There
were two copies of the basic design intermixed, so that the first phase
involved more than one correct response. Hence there were a total of six
cues and four outcomes. This yielded a total of 200 training trials. Across the
200 training trials, there were 50 trials of each of the I1.PE1 ! E1,
I1.PL1 ! L1, I2.PE2 ! E2, and I2.PL2 ! L2 items. The order of items
was randomly permuted within each block.

The testing phase continued seamlessly after the training phase. Each
testing block contained two trials of each of the four training items with
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feedback, as indicated in Table 1. This continued training equalized the
short-term base rates during test, served as a reminder of the correct out-
comes in the midst of the test trials, and simultaneously assessed accuracy on
the training items. Each testing block also contained the 11 other test types
shown in Table 2. Each of the 11 test types was probed once per block for
each copy of the cue structure. Therefore each test block contained 30 trials,
which were randomly permuted within blocks. There were two test blocks.
The totality of the experiment comprised 260 trials, and took approximately
15 min for a participant to complete.

3.1.2. Stimuli
The six cues words were either the set, ‘‘snake,’’ ‘‘robin,’’ ‘‘whale,’’ ‘‘puppy,’’
‘‘skunk,’’ and ‘‘trout,’’ or else the set, ‘‘child,’’ ‘‘mouse,’’ ‘‘ocean,’’ ‘‘tulip,’’
‘‘piano,’’ and ‘‘arrow.’’ These words were selected because they are highly
concrete and imagable, they all have five letters, they all have different
initial letters (within a set) that are also different from the letters of the response
keys, and there are no striking semantic relationships between words (within a
set). The set used for a participant was selected randomly. The assignment of
the six words to the six abstract cue types was randomly permuted for each
participant.

The response keys were F, G, H, and J. These are the four central keys
on a standard keyboard. Figure 4 shows examples of the stimuli as displayed

Table 2 Response Percentages for Each Probe in the Test Phase of the Canonical
Highlighting Design.

Response

Cues E L Eo Lo

I.PE 91.8 5.9 1.0 1.4

I.PL 3.9 93.9 1.4 0.8

I 63.7 26.2 6.2 3.9

PE.PL 35.2 57.8 3.5 3.5

PE.PLo 29.3 5.9 5.1 59.8

PE 85.9 5.1 5.1 3.9

PL 3.9 87.5 5.5 3.1

I.PE.PL 43.8 45.7 3.5 7.0

I.PEo.PL 13.3 62.5 17.6 6.6

I.PE.PLo 48.4 7.8 5.5 38.3

I.PEo.PLo 9.8 16.0 27.7 46.5

I.PEo 21.9 19.9 51.6 6.6

I.PLo 11.7 16.8 3.1 68.4

Note: The first two rows are based on 8 trials/subject, and the remaining rows are based on 4 trials/
subject, with 64 subjects.
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on the computer screen. The assignment of keys to abstract labels (E1, L1,
E2, and L2) was randomly permuted for each participant.

Figure 4 shows examples of the stimuli and feedback as actually
presented on the computer screen. The position of the cue words was
randomly permuted from trial to trial. For example, on some I.PL ! L
trials, cue I appeared above cue PL, but on other trials, cue PL appeared
above cue I.

3.1.3. Instructions
The instructions to the participant provided no causal cover story. For
example, there was no mention of symptoms and diseases that several
previous studies used (e.g., Kruschke, 1996; Medin & Bettger, 1991;
Medin & Edelson, 1988). The instructions were neutral, saying only the
following:

In this experiment you will see some common words on the computer
screen. Your job is to learn which words indicate which keys to press. You
can press ‘‘F,’’ ‘‘G,’’ ‘‘H,’’ or ‘‘J.’’ When the words are presented, you make
a guess by pressing one of the keys. Please locate the F, G, H, and J keys on
the keyboard now—they are in the middle of the keyboard. After you make
your choice in response to the words, the correct answer will be displayed.
At first you will just be guessing, but after several repetitions you can learn
which words indicate which keys. The correct keys for the words never
change, so you can achieve perfect accuracy if you try. At some times during
the experiment, new words may be introduced. Just learn these new words
as accurately as you can.

ocean

arrow

Press your choice on the keyboard:

F G H J

ocean

arrow

Wrong! Correct response is:

Press space bar to continue

H

Figure 4 Left: Computer display for cues with response prompt. Right: Computer
display for cues with corrective feedback. The actual displays had gray backgrounds,
rendered here as white.
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3.1.4. Participants
Participants volunteered for partial credit in introductory psychology
courses at Indiana University. This subject pool has a median age of
approximately 19 years and is about 50–60% female. Procedures for protec-
tion of human subjects were approved by the local Institutional Review
Board. There were 72 participants.

3.2. Results

3.2.1. Learning Criterion
The results on the generalization probes are only of interest if the participants
accurately learned the training items. If chance performance is considered to
be 1/4 correct, because there were four response options, then significantly
above chance requires 6 out of 8 correct (two-tailed, p < 0.05).2 Therefore,
if a participant showed fewer than 6 out of 8 correct responses on either I.PE
or I.PL trials in the test phase, he or she was excluded from further analysis.
The learning criterion eliminated only 8 of 72 participants (i.e., 11%),
leaving N = 64.

3.2.2. Choice Data
Table 2 shows the average percentage of choices of each response category,
for all the different test items. Each cue had outcomes with which it was
associated during training, and other outcomes with which it was not asso-
ciated. For example, during training, there occurred cases of I1.PL1 ! L1
and I2.PL2 ! L2. In test, there were probes involving combinations of cues
from different sets, such as I1.PL2 and I2.PL1. Because of the structural
symmetry in the design, these cases were collapsed and denoted I.PLo, with
the lowercase ‘‘o’’ indicating the other copy of the cues. Responses
corresponding with the other cue were also marked with an affixed lowercase
‘‘o.’’ For example, if the probe is I1.PL2 and the response is L2, the probe is
tabulated as a case of I.PLo with response Lo. If the response to I1.PL2 is
instead E1, it is tabulated as a case of response E.

First, notice that accuracy for the training items was very high in the test
phase. (Recall the learning criterion demanded 6 out of 8, i.e., 75% correct,
on both items.) The first two rows of Table 2 indicate that performance on
the training items was in the low-nineties percent correct.

2
The learning criterion can be motivated from a Bayesian perspective instead of from null hypothesis
significance testing. Suppose the prior belief regarding the underlying probability correct on training items
has a mean of 1/4, that is, guessing, but has a large uncertainty, expressed as a beta(1, 3) distribution. When
6 of 8 test trials are correct, the resulting posterior beta(6 þ 1, 2 þ 3) distribution has a 95% HPD interval
(from 0.318 to 0.841) that excludes the chance value 0.25. But when only 5 of 8 test trials are correct, the
posterior beta(5 þ 1, 3 þ 3) distribution has a 95% HPD interval (from 0.234 to 0.766) that includes the
chance value 0.25. The same conclusion is reached if the prior is beta(2, 6), instead of beta(1, 3), which
expresses somewhat higher prior certainty that the learner is merely guessing.
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The results show a robust highlighting effect. For the imperfect cue
I (third row of Table 2), there was a strong preference for response E over
response L, with people selecting E more than twice as often as L (63.7 vs
26.2%). Statistical analyses are provided in Section 3.2.3. On the other
hand, for the conflicting-cue case of PE.PL (fourth row of Table 2), there
was a robust preference for response L over response E. Thus, the trademark
‘‘torsion’’ of highlighting is strongly displayed in this canonical design.

The dominance of PL over PE is also revealed by several other test
probes. Probe PE.PLo (fifth row of Table 2) shows that response Lo is
preferred over response E. Probe I.PEo.PLo (third from bottom row of
Table 2) shows that Lo is preferred over Eo. And comparing I.PEo with
I.PLo (bottom two rows of Table 2) shows that PLo dominates I more than
PEo dominates I.

The remaining probes are included primarily to fill out all possible cue
combinations (with up to three cues), for thoroughness and as additional
constraints for future model fitting.

3.2.3. Bayesian Statistical Analysis
The data were analyzed using Bayesian methods. The appendix provides a
few general reasons to prefer Bayesian methods over traditional null
hypothesis significance testing. For the specific application here, traditional
chi-square tests, which have been used in previous reports, are problematic
because it is unclear how to combine data across subjects. Previous analyses
have made the implausible assumption that all subjects are equally represen-
tative of a mutual übersubject, without any allowance for individual differ-
ences. Moreover, the traditional chi-square analyses merely test a null
hypothesis of equal responding, without providing an estimate of what
range of response biases are tenable, given the data. Both of these problems
are addressed by the Bayesian analysis.

In the Bayesian analysis, a descriptive model of the data is defined, and
the parameter values of the model are estimated. The Bayesian analysis
yields a degree of belief in all possible parameter values, not merely a single
best-fitting parameter value. In the following paragraphs, the model is first
defined, followed by a description of how the posterior distribution was
generated, followed, finally, by a description of the posterior distribution
itself.

The left side of Figure 5 suggests the basic structure of the model,
informally. At the bottom left of the diagram, each individual’s observed
response frequencies are a random sample from that individual’s underlying
response propensity. The downward arrow in Figure 5 represents the
generation of responses based on underlying propensities. Moving up a
level, each individual’s underlying response propensity is considered to be
a random draw from some overall distribution of response propensities,
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governed by the cue combination. In other words, the cue combination at
test evokes some overall response propensity. That overall response propen-
sity has somewhat different manifestations in different individuals. The
variation across individuals, due to distinct draws from the overarching
propensity, is represented by the downward arrow with ellipses on either
side.

The informal structure on the left side of Figure 5 is given formal
precision on the right side of the figure. Notation will be explained from
the bottom up. Recall that in the test phase, each cue combination was
presented to the learner several times. For example, the test cue I was
presented to each learner four times, and the four responses might comprise
2 E’s, 1 L, 1 Eo, and 0 Lo’s. These response frequencies, for the ith
individual, are denoted by !yi ¼ hyE;i; yL;i;yEo;i; yLo;ii, on the lowest row in
Figure 5.

The particular response frequencies are modeled as a random sample
from the individual’s underlying response propensities, denoted!pi ¼ hpE;i;pL;i; pEo;i;pLo;ii in Figure 5. Mathematically, a random sample
of categorical responses is generated by a multinomial distribution with
underlying probabilities pE,i, pL,i, pEo,i, and pLo,i (which sum to 1), and
this sampling is denoted !yi � multinomialð!piÞ.

An individual’s response propensities are assumed to be a random repre-
sentative of the overall response propensity induced by the test item. The
overall response propensity for a test item is denoted!a ¼ haE; aL; aEo; aLoi
in the top row of Figure 5. Mathematically, a random sample of response
probabilities is generated from a Dirichlet distribution that has parameters
aE, aL, aEo, and aLo.

In summary, this hierarchical model allows individual differences to
be captured by participant-level multinomial probabilities, mutually
constrained by being drawn from the same higher level Dirichlet distribu-
tion which describes across-subject response tendencies for the cues.

Overall response propensity

Informal Formal notation

Individual response propensity

Individual response frequency

a = 〈aE,aL,aEo,aLo〉

. . . . . . . . . . . . pi ∼ dirichlet(a)

pi = 〈pE,i, pL,i, pEo,i, pLo,i 〉

yi = 〈yE,i, yL,i, yEo,i, yLo,i 〉

yi ∼ multinomial( pi )

Figure 5 Hierarchical model analyzing each test item. Not indicated in the diagram is
the hyperprior on a, which was ar � gamma (0.25, 0.0025) r. See main text for
discussion.
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The primary goal of the analysis is to generate a posterior estimate of
overall response propensities !a for each probe item. For example, suppose
that the estimated posterior distribution on the !a parameters for test cue I
has a typical value of haE; aL; aEo; aLoi¼h300; 500; 100; 100i. This
implies that typical individual-level response probabilities will be near
pE;i ¼ aE=Sak ¼ 0:30, pL;i ¼ aL=Sak ¼ 0:50, pEo;i ¼ aEo=Sak ¼ 0:10,
and pLo;i ¼ aLo=Sak ¼ 0:10. The posterior distribution on the a parameters
yields the explicit posterior probability that, for example, the response
tendency for L is greater than the response tendency for E. This will be
explained in more detail below, with the actual posterior distributions of
specific probe items.

The posterior on the a parameters is also indicative of the across-subject
consistency of responses. If all subjects give the same distribution of
responses to a cue, then the a estimates are high, because high a’s yield
little variation among individual pi values. But if subjects give responses that
vary a lot from one person to another, then the posterior a values are low, to
allow for variation among individual pi values.

The prior distribution on the a parameters was set to be vague and equal
for all components. Specifically, the prior on each a was a gamma density
with mean 100 and standard deviation 200 (yielding gamma parameters of
shape = 0.25 and rate ¼ 0.0025). Because very small values of a caused
trouble for the Dirichlet sampling, the gamma distributions were censored
at 0.3. Small changes in the arbitrary censoring value yielded trivial changes
in the posterior. This vague and unbiased prior was selected in an attempt to
be unobjectionable to a general skeptical audience. (If the prior were instead
informed by previously published results from related designs, such as those
of Medin and Bettger (1991), then the posterior distributions reported
below would be even stronger.)

The posterior distribution was determined by Markov chain Monte
Carlo (MCMC) approximation. The simulations used the software
BRugs, which is an R-language interface to OpenBUGS, which in turn
is based on WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). Five
parallel MCMC chains were simulated, using a burn-in of 50,000 steps and
thinning of 1000 steps. This extensive burn-in and thinning produced well-
mixed chains with small auto-correlation, so the posterior sample is very
trustworthy. From each of the five chains, 1000 steps were retained to
represent the posterior, yielding 5000 representative parameter values.

Figure 6 shows results for selected cues. The upper panel shows results
from cue I. The Bayesian analysis yielded 5000 representative points
haE; aL; aEo; aLoi in the posterior distribution. Each of those points indicates
a credible combination of a values, given the data. At any of the 5000 points,
the estimated overall probability that participants give a response of E is p(E|I ) =
aE/(aE þ aL þ aEo þ aLo). The preference of response E compared to
responseL is, therefore,p(E|I )–p(L|I ) ¼ (aE�aL)/(aE þ aL þ aEo þ aLo).
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This preference is computed at each of the 5000 points in the posterior, and a
histogram of those credible preferences is shown in the top panel of Figure 6. It
shows that the mean estimate of p(E|I ) � p(L|I ) is 0.377, the 95% highest
posterior density3 (HPD) region falls well above zero (ranging from 0.264 to
0.485), and100%of thebelievablevalues aregreater thanzero. Inotherwords,our
posterior beliefs about the response bias for cue I are very firmly that E is preferred
over L.

Analogously, the middle and lower panels of Figure 6 indicate that our
posterior beliefs are very firmly that response L is preferred to response E for
cues PE.PL, and Lo is preferred to Eo for cues I.PEo.PLo. The posterior
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Figure 6 Posterior distributions of response biases for selected cues.

3
By definition, all the points of the 95% HPD region have higher believability than points outside the region,
and the region covers 95% of the believable values.
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distributions reveal in detail just how believable are various magnitudes of
preference. In particular, for cues I.PEo.PLo, the mean of believable values
for p(Eo|I.PEo.PLo) � p(Lo|I.PEo.PLo) is �0.182, the 95% HPD is well
below zero (ranging from �0.301 to �0.0698), and 99.9% of the values are
below 0. This bias for cues I.PEo.PLo is especially challenging for the
eliminative inference model ( Juslin et al., 2001; Kruschke, 2001b).

Another test cases of interest, not shown in Figure 6, is PE.PLo. The
posterior for p(E|PE.PLo) � p(Lo|PE.PLo) has mean �0.304, 95% HPD
ranging from �0.433 to �0.171, and has 100% of its values less than 0.
Finally, it is interesting to compare p(Eo|I.Eo) with p(Lo|I.PLo). The
posterior for p(Eo|I.Eo) � p(Lo|I.Lo) has mean �0.161, 95% HPD
ranging from �0.253 to �0.067, and has 99.8% of its values less than 0.

The posterior distributions of a parameters are available on the author’s
Web site. The distributions are useful for two purposes. First, interested
readers can examine the believable response propensities for all the test
cases. Second, researchers who want to repeat the experiment can use the
distribution as a prior for their own analyses.

In summary, the Bayesian analysis indicates that the signature ‘‘torsion’’
of highlighting is highly credible for these data from a canonical high-
lighting design. The Bayesian analysis avoided the questionable assumption
of traditional chi-square analyses, that all individuals have the same response
propensities. And unlike chi-square analyses that only indicate whether or
not a null hypothesis can be rejected, the Bayesian analysis explicitly reveals
the believabilities of various degrees of response preference.

3.3. Implications and Discussion

The main point of the results is that the classic highlighting effect occurs
robustly even in a ‘‘canonical,’’ equalized base-rates design. In other words,
the highlighting effect is not properly called an inverse base-rate effect,
because there are no differential base rates to invert. Indeed, as argued by
Kruschke (1996), the inverse base-rate effect of Medin and Edelson (1988)
is best understood as a case of highlighting in which the differential order of
learning happens to be driven by differential base rates; that is, the role of
differential base rates is to cause the more frequent cases to be learned before
the less frequent cases.

One implication of the results is that theories of learning must be
sensitive to order or learning. The highlighting effect occurs because later
learned outcomes are learned in the mental context of previously learned
outcomes. Theories of learning that are insensitive to learning order will
necessarily fail to account for highlighting.

One family of theories that is insensitive to trial order comprises current
versions of Bayesian learning models that treat all instances as equally
representative data, irrespective of when the trials occurred. In principle,
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Bayesian learning models are able to incorporate temporal variables, but
most current models do not, merely for simplicity. Future Bayesian
approaches should include mechanisms that are sensitive to trial order,
and, even better, also incorporate attentional learning.

Rather than incorporate explicit learned temporal dependencies into a
Bayesian model, a different approach to modeling highlighting is to ‘‘break’’
the Bayesian model so it becomes non-Bayesian. Daw et al. (2008) showed
that by applying various restrictions to the Kalman filter (a Bayesian model),
which were motivated by different statistical approximation techniques, the
approximately Bayesian model could qualitatively reproduce the basic tor-
sion of the highlighting effect. Some approximations yielded the basic
torsion, while others did not. It remains to be seen whether any particular
approximation to a Kalman filter can exhibit the full set of preferences
reported in Table 2 and results from previous studies summarized in the
first half of this chapter.

A theorist might be motivated to model highlighting with an approxi-
mately Bayesian model if highlighting is appraised as a mere breakdown in
an otherwise smoothly operating Bayesian mind. But highlighting is not a
mere anomaly, and highlighting is not dependent on straining the limits of
human information processing. As was suggested in the first half of this
chapter, highlighting is a robust phenomenon that occurs across a variety of
situations and with only moderate demands on mental processing. High-
lighting is a sign of learning well, not badly.

Instead of asserting that the mind is a poor approximation to a Bayesian
model, the Bayesian theorist can maintain that the mind is Bayesian, but at
different levels of analysis. Rather than insist that the entire mind is globally
Bayesian, it may be that sub-processes or components of mind are locally
Bayesian. Clearly there may be learning occurring at many levels: neurons,
anatomical partitions of brain, functional partitions of mind, individual per-
sons, committees of people, corporations, and entire societies. Locally Bayes-
ian learning of cue-to-attention mappings and of attended-cue-to-outcome
mappings is one candidate for this sort of approach (Kruschke, 2006c).

Another implication of the results presented here is that explanations of
the inverse base-rate effect should start with an explanation of (canonical)
highlighting, and then include additional considerations for dealing with
response biases in the presence of differential base rates. In particular,
because the preference for the later learned category, in response to probe
PE.PL, persists even when base rates of the response categories oppose that
preference, there is likely to be an underweighting of base rates ( Johansen
et al., 2007; Kruschke, 1996). Indeed, Goodie and Fantino (1999) argued
that base rates are rationally underweighted because base rates change more
often than cue-outcome contingencies (see Dunwoody, Goodie, & Mahan,
2005, for empirical evidence).
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One further implication of the results is that highlighting is not caused by
eliminative inference ( Juslin et al., 2001). The theory of eliminative infer-
ence assumes that response L is given to cues PE.PL because the L category
has not been well learned: The L response is given because the well-learned
E response is eliminated, and category L is inferred because it is all that
remains from the response options. In the canonical design, however, all the
categories are very well learned; there are no rare categories that are only
weakly learned (cf. Experiment 2 of Kruschke, 2001b).

It is hoped that the canonical design, data, and Bayesian posterior can be
profitably applied by other researchers. The canonical design is adaptable to
various stimulus types and subject populations. In particular, if the phases are
trained to criterion, rather than for a fixed number of trials, genuine learning of
the early cases is assured. The computer program that was used for the
experiment is available from the author’s Web site. Because the canonical,
equal base-rate design is particularly challenging to theories of learning, the
data can be used as a test bed formodels of learning. The complete raw data set
is available from the author’sWeb site. Analysis of future data sets, when using
the hierarchical Bayesian model of Figure 5, might also profitably use the
posterior beliefs from the present analysis to inform priors for subsequent
analyses. The posterior distribution is also available from the author’sWeb site.
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Appendix: Two general reasons that null

hypothesis significance testing has less than

ambient pressure

A traditional chi-square analysis might be applied to the data in
Table 2, but there are compelling reasons to avoid null hypothesis signifi-
cance testing (NHST) in favor of Bayesian analysis, in general. One reason
to avoid NHST is that it relies on the covert intention of the experimenter
to define what it means to replicate the experiment and thereby derive a
sampling distribution. The sampling distribution for replicated experiments
is the crucial foundation for NHST, because the sampling distribution
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determines the p value. In traditional NHST, a replication usually assumes
that the intention was to fix the sample size N, whereby a replication of the
experiment means a random sample of size N from the null hypothesis
population. In the present experiment, N was not fixed in advance. Instead,
available session times were posted for many hours during a week. Many
volunteers signed up. If the supply of volunteers happened to be at a slow
rate, the experiment would have been run for another week or two. Only a
subset of those who signed up actually showed up for the experiment. On
very rare occasions, a computer may inexplicably freeze during an experi-
ment, or a subject might decide to discontinue the experiment. After the
data are collected, the learning criterion excludes some unforeseen number
of subjects from further analysis. It is absurd, therefore, to consider a
sampling distribution in which N is fixed. But all the p values computed
by statistical packages, and critical values tabulated in the appendices of
textbooks, assume fixed N. More fundamentally, the experiment was
designed to insulate the data from the experimenter’s intentions, so the
experimenter’s intention to run N = 20 or N ¼ 200 should have no
influence on the interpretation of the data. The fundamental logic of
NHST assumes that the experimenter’s intentions should determine the
interpretation of data, which runs counter to the even more fundamental
effort to insure that the experimenter’s intentions do not influence the data.

There is another reason to avoid NHST: It does not tell us what we want
to know. Consider, for example, responses in the test phase to cue I. The
data suggest that p(E|I ) > p(L|I ) in the underlying population, but we
would like to know how much we can believe that there is a difference.
More generally, we would like to know how much we can believe in any
particular difference p(E|I ) � p(L|I ) in the underlying population. Sup-
pose we conduct a chi-square goodness-of-fit test for a null hypothesis of
equal response probabilities across the four response options. The resulting
p value tells us the probability of getting a chi-square value as or more
extreme than the one we found in our data, were we to repeat the experi-
ment with the sameN from the null hypothesis. The NHST p values tells us
about the probability of data we might have gotten but did not observe, if
we replicated according to covert intentions of fixed N. In principle, we
could consider alternative hypotheses and conduct tests of rejection on
those alternatives, to construct a range of underlying response probabilities
that significance testing would not reject, but this is not done by standard
statistical packages and would still rely, nevertheless, on the strange notion
of a fixed-N sampling distribution. And, most importantly, it would not tell
us how much we should believe in each unrejected set of response prob-
abilities. Bayesian analysis, on the other hand, relies only on the observed
data, not on the experimenter’s intentions during data collection. And
Bayesian analysis tells us what we want to know, namely, the believabilities
of underlying response probabilities and their differences.
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