
Draft typeset February 22, 2011
To appear in Perspectives on Psychological Science.

Bayesian assessment of null values
via parameter estimation and model comparison

John K. Kruschke
Indiana University, Bloomington

Psychologists have been trained to do data analysis by asking whether null values can be re-
jected. Is the difference between groups non-zero? Is choice accuracy not at chance level?
These questions have been addressed, traditionally, by null hypothesis significance testing
(NHST). NHST has deep problems that are solved by Bayesian data analysis. As psychol-
ogists transition to Bayesian data analysis, it is natural to ask how Bayesian analysis assesses
null values. The article explains and evaluates two different Bayesian approaches. One method
involves Bayesian model comparison (and uses “Bayes factors”). The second method involves
Bayesian parameter estimation and assesses whether the null value falls among the most cred-
ible values. Which method to use depends on the specific question that the analyst wants to
answer, but typically the estimation approach (not using Bayes factors) provides richer infor-
mation than the model comparison approach.

Psychologists are routinely trained to frame their research
design and analysis in terms of rejecting null values. For
example, when studying the influence of distraction on re-
sponse time, we might ask whether the change in response
time is different from the null-effect value of zero. When
studying the influence of training that is purported to en-
hance intelligence, we might ask whether the training yields
IQ scores that are different from the null-effect value of 100.
When studying the discriminability of faint stimuli in a two-
alternative forced choice task, we might ask whether accu-
racy is different from the null-effect value of 50%. These
examples show that the null-effect value can differ across do-
mains (e.g., zero, 100, or 50%), but the research question is
framed the same way: Can the null value be rejected?

The traditional method for assessing null values, that has
dominated psychological research for several decades, is
called null hypothesis significance testing (NHST). In NHST,
the researcher imagines repeatedly running the intended ex-
periment on a hypothetical population for which the null
value is true. The samples of data from the simulated re-
peated experiments yield a distribution of predictions from
the null hypothesis. If the single real set of data falls in the
extreme tails of the predictions from the null, then the null
hypothesis is rejected, because the probability of getting such
an extreme result from the null hypothesis is small.

Despite its routine use, NHST has many deep problems
(as will be described later), and psychologists are transition-
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ing away from NHST to Bayesian data analysis. Because
psychologists are so used to framing their research in terms
of assessing null values, it is natural to ask how Bayesian data
analysis assesses null values. The main point of this article
is an explanation and evaluation of two different Bayesian
approaches to the assessment of null values.

In one Bayesian approach to assessing null values, the an-
alyst sets up two competing models of what values are pos-
sible. One model posits that only the null value is possible.
The alternative model posits that a broad range of other val-
ues is also possible. Bayesian inference is used to compute
which model is more credible, given the data. This method
is called Bayesian model comparison.

In a second Bayesian approach to assessing null values,
the analyst simply sets up a range of candidate values, in-
cluding the null value, and uses Bayesian inference to com-
pute the relative credibilities of all the candidate values. This
method is called Bayesian parameter estimation.

This article provides examples of all three approaches to
assessing null values (i.e., NHST, Bayesian model compar-
ison, and Bayesian parameter estimation). It will be shown
that both Bayesian methods are superior to NHST because
the Bayesian methods provide more informative inferences
without the problems of NHST. To understand the relation
between the two Bayesian approaches, they will be shown to
be two levels in a unifying hierarchical framework. We will
see that the choice of Bayesian method depends on the ques-
tion that the analyst wants to answer: Does the analyst want
to know whether a null model is more or less credible than a
specific alternative model? If so, use the model comparison
approach. Does the analyst want to know the relative cred-
ibilities of all candidate values (including the null value)?
If so, use the parameter estimation approach. Typically the
parameter estimation approach provides richer information
than the model comparison approach.

The article proceeds by first describing Bayesian infer-
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ence generally, then the two Bayesian methods for assess-
ing null values, along with a brief comparison with NHST.
Then the unifying hierarchical framework is explained. The
issues are then further illustrated and amplified in the context
of multiple tests of differences between several groups. The
article concludes with recommendations for when to use the
two Bayesian methods.

Bayesian inference generally

Bayesian inference is merely the re-allocation of credibil-
ity across a space of possibilities. The essence of Bayesian
inference is applied intuitively in many everyday situations.
For example, the fictional detective Sherlock Holmes fa-
mously described Bayesian reasoning when saying to his
sidekick, Dr. Watson, that if you have eliminated all possibil-
ities but one, then whatever possibility remains must be true,
no matter how improbable it seemed at first (Doyle, 1890).
This is Bayesian reasoning because Holmes began with a
set of possible explanations, collected data that eliminated
some possibilities, and re-allocated credibility to the remain-
ing possibilities. The complementary re-allocation is also
Bayesian, and can be called “the logic of exoneration.” For
example, if there are several unaffiliated suspects for a crime,
when one suspect is implicated by DNA tests, the other sus-
pects are exonerated. This is Bayesian reasoning because we
begin with a set of possible culprits, collect data that increase
the culpability of one suspect, and then re-allocate culpability
away from the other suspects. The intuitiveness of Bayesian
inference for scientific data analysis is discussed by Dienes
(2011).

Formal Bayesian inference operates the same way. What
makes formal Bayesian inference “formal” is the use of
mathematical formulas to define the space of possibilities
over which credibility is re-allocated. The mathematical for-
mulation also allows exact, normative re-allocation of credi-
bilities according to an equation known as Bayes’ rule. The
first step in any statistical analysis (including NHST) is to
establish a mathematical model that describes the data. The
model has parameters that express the underlying tendencies
or trends in the noisy data, and the goal of the analysis is to
estimate the values of the parameters.1 In linear regression,
for example, the slope of the regression line is a parameter
that describes a relation between the predicted and predict-
ing variables. We are interested in knowing which slopes are
credible given the data, and, in particular, whether a slope of
zero can be rejected. In the next three sections of the arti-
cle, we will consider Bayesian parameter estimation, NHST,
and Bayesian model comparison, applied to an even simpler
scenario.

Bayesian parameter estimation

Consider a simple perceptual discrimination experiment
in which stimuli are presented rapidly and partially ob-
scured. Previously published research using similar proce-
dures yields accuracy around 65% correct, with chance being
50%. Suppose we conduct a new experiment, and we want to

assess whether or not we can safely infer that a subject per-
ceived something discriminable in the stimuli, and did not
merely respond at chance levels of accuracy.

The first step in the statistical analysis is establishing a
descriptive mathematical model of the data. In the present
application, we can make an extraordinarily simple model,
in which the observer’s underlying probability of making a
correct response is given by the value θ (Greek letter “theta”).
We will denote a correct response in the data as D = 1 and
an erroneous response as D = 0. Then the probability of a
correct response is formally expressed as p(D=1|θ) = θ and
the probability of an error is p(D=0|θ) = 1 − θ. Combined
into one expression, we have p(D|θ) = θD(1 − θ)(1−D). This
mathematical expression for the probability of the data, given
a parameter value, is called the likelihood function. Because
the data are fixed, the mathematical expression is a function
of the parameter value. The likelihood function provides the
probability of the observed data for each candidate value of
the parameter.

In Bayesian parameter estimation, we establish the credi-
bility for each value of the parameter before observing new
data. These parameter-value credibilities are called the prior
distribution. In the present application, we might use the
previous research, which indicates that accuracy should be
around 65%, to establish a prior distribution across values
of θ that is agreeable to a skeptical scientific audience. On
the other hand, if we prefer to use some sort of generic, “au-
tomatic” prior distribution, we could start with a flat distri-
bution that gives all values of θ equal credibility. Other un-
informed prior distributions are discussed by Lee and Wa-
genmakers (2005), and mathematical desiderata for unin-
formed prior distributions are reviewed by Kass and Wasser-
man (1996). For the present example, we will use the flat
prior distribution, as illustrated in the top-left panel of Fig-
ure 1. The graph in that panel plots the probability of each
candidate value of θ. In Bayesian mathematics, credibility is
denoted by probability because they behave mathematically
the same way. The plot of the prior distribution is merely a
flat, horizontal line, indicating that every value of θ between
0 and 1 is equally credible. This choice of prior distribution is
not very reasonable in the present application because accu-
racies below 0.5 are not very meaningful unless the observer
detects the stimuli but then systematically responds contrar-
ily. Moreover, we know that the stimuli are presented quickly
in noise, hence large values of θ are also not very credible.
Nevertheless, the flat prior distribution expresses a form of
neutrality and lack of previous knowledge, so we will use it
for purposes of illustration.

Suppose we collect responses from N = 47 trials, and
obtain z = 32 correct responses. The likelihood function
for these data is shown in the middle-left graph of Fig-
ure 1. Notice that the likelihood function is peaked at the
observed proportion of correct responses in the data, that is,

1 The statement that statistical inference uses models with pa-
rameters has only one exception, in so-called “resampling” or
“boot-strapping” methods in NHST. Resampling methods do not
solve the fundamental problems of NHST.
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Figure 1. Bayesian parameter estimation and model comparison. For parameter estimation, the top-left graph shows a flat prior distribution
over the parameter, the middle-left graph shows the likelihood function, and the bottom-left graph shows the posterior distribution. The right
column uses a null-model prior distribution which is zero everywhere except at the null value of θ = 0.5 (the spike over the null value has,
in principle, infinite height and infinitesimal width). The data comprise 32 correct responses in 47 trials, as indicated in the middle row. The
lower-left graph shows that the posterior 95% HDI falls outside the ROPE (which extends from .47 to .53). The Bayes factor (BF) of the flat
prior relative to the null prior is p(D|flat)/p(D|null) = 2.77e−14/7.11e−15 = 3.90.
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z/N = 32/47 = 0.68. Values of θ much higher or much lower
than the observed proportion are not very consistent with the
data.

The re-allocation of credibility across values of θ is dic-
tated by Bayes’ rule, which is merely the mathematically
normative formula

p(θ|D)︸ ︷︷ ︸
posterior

= p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

/
p(D)︸︷︷︸

evidence

(1)

In words, Bayes’ rule simply states that the posterior cred-
ibility of a value of θ is the likelihood of that value of θ
times the prior credibility of that value of θ, all divided by
the constant p(D). Bayes’ rule is easy to understand graph-
ically by looking in the left column of Figure 1. The poste-
rior distribution in the lower-left panel is computed at each
value of θ by multiplying the likelihood of that value of θ,
from the middle-left panel, times the prior of that value of
θ, in the upper-left panel, and dividing by a constant that
makes the total probability under the posterior distribution
sum to one. The normalizing constant, called the “evidence”
in Equation 1, will be explained in more detail later in the
article. The shape of the posterior distribution in Figure 1
happens to match the shape of the likelihood function only
because the prior distribution is flat in this example. When
the prior distribution is flat, it has the same constant height
at every value of θ, and therefore multiplying the likelihood
times the prior is simply multiplying the likelihood times a
constant. Examples of non-flat prior distributions appear in
Figure 4.

The posterior distribution in the lower-left panel shows
which values of θ are most credible, insofar as they are con-
sistent with the data (as measured by the likelihood func-
tion) and consistent with the prior. The posterior distribution
reveals explicitly the relative credibility of every candidate
value of θ. The width of the posterior distribution indicates
our uncertainty in the estimate. If the posterior distribution is
very wide, then we have high uncertainty in our estimate, but
if the posterior is very narrow, then we have high certainty in
the estimate.

We can use the posterior distribution to make a decision
regarding the credibility of a null value. A glance at the
lower-left panel of Figure 1 suggests that the null value of
0.5 is not among the reasonably credible values. This in-
tuitive assessment can be formalized with the following de-
cision procedure. We first define an interval of parameter
values that represents the bulk of the most credible values.
A convenient way to do this is with the 95% highest density
interval (HDI), for which all values inside the interval have
higher credibility than values outside the interval, and the in-
terval contains 95% of the distribution. For the posterior dis-
tribution in Figure 1, the 95% HDI extends from θ = 0.543
to θ = 0.800.

To assess the credibility of a null value, we establish a re-
gion of practical equivalence (ROPE) around the null value.
The ROPE indicates values of θ that we deem to be equiva-
lent to the null value for practical purposes. In real applica-
tions, the limits of the ROPE would be justified on the basis

of negligible implications for small differences from the null
value. Another way of thinking about the ROPE is that the
total probability within the ROPE in the prior distribution
establishes the prior probability of the values equivalent to
the null value. Examples are marked in Figures 1, 2 and 4.
Hence the ROPE must also be reasonable with respect to the
prior and vice versa. In some applications we can leave the
limits of the ROPE unspecified, and let readers use their own
ROPE to draw their own conclusions. But even if unspeci-
fied, a ROPE is implicitly assumed.

With the ROPE established, our decision rule is then as
follows: If the 95% HDI lies entirely outside the ROPE, then
we declare the null value to be rejected. If the 95% HDI falls
entirely inside the ROPE, then we declare the null value to
be accepted for practical purposes, because the vast majority
of the credible values are practically equivalent to the null.
Otherwise we suspend judgment (but for more decision cat-
egories when the HDI overlaps the ROPE, see Berry, Carlin,
Lee, & Müller, 2011; Spiegelhalter, Freedman, & Parmar,
1994)

As an example of using this decision procedure, the lower-
left panel of Figure 1 displays the 95% HDI of the poste-
rior distribution, and a ROPE that extends from θ = 0.47 to
θ = 0.53. Because the 95% HDI falls entirely outside the
ROPE, we decide to reject the null value, which means that
we decide that the observer was not responding by chance
alone. As another example, suppose that the data showed
only 30 correct out of 47 trials. The lower-left panel of Fig-
ure 2 shows that the 95% HDI overlaps the ROPE, and there-
fore in this case we would suspend judgment.

One attractive quality of this decision procedure is that
the null value can be accepted, not only rejected as in NHST.
When data are sampled from a truly null population, then,
as the sample size increases, the HDI becomes narrower and
will eventually fall entirely inside the ROPE, correctly ac-
cepting the null value. Moreover, the proportion of the pos-
terior inside the ROPE indicates the total credibility of values
that are practically equivalent to the null. Regardless of the
decision rule, however, the primary attraction of using pa-
rameter estimation to assess null values is that the an explicit
posterior distribution reveals the relative credibility of all the
parameter values.

Summary
The framework of Bayesian parameter estimation is sum-

marized in the middle column of Figure 3, which indicates
the main definitions and procedures for the method. It
is worthwhile to become familiar with Figure 3 now, be-
cause the other inference methods, to be described next,
have analogously structured summaries juxtaposed in adja-
cent columns of the figure.

Null hypothesis significance
testing (NHST)

We can conduct traditional NHST on the two sets of data
in Figures 1 and 2. Again we start with a descriptive model in
which θ is a parameter that indicates the underlying accuracy,
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Figure 2. For a description of the panels, see the caption of Figure 1. The data comprise 30 correct responses in 47 trials, as indicated in the
middle row. The lower-left graph shows that the posterior 95% HDI overlaps the ROPE. Indeed, the lower bound of the 95% HDI falls just
under the null value of 0.5. The Bayes factor (BF) of the flat prior relative to the null prior is p(D|flat)/p(D|null) = 7.6e−15/7.11e−15 = 1.07.
Thus, the decision from the HDI-ROPE criterion of Bayesian parameter estimation agrees with the decision from the BF criterion of Bayesian
model comparison.
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Figure 3. The three inference methods compared. Columns correspond to inference methods, and rows correspond to issues within an
analysis.
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and the null value is θ = 0.5. But there is no prior or posterior
credibility of parameter values. Instead, we consider only the
null value and figure out what typical data should appear if
the null value were true and we conducted the intended ex-
periment. For example, if we intend to run N = 47 trials, and
the true value of θ is 0.5, then we would expect to observe
approximately 0.5 × 47 = 23.5 correct responses. On differ-
ent simulated replications of the experiment, sometimes the
observed number correct would be greater or less than 23.5,
but rarely would it be close to the extremes of zero or N. If
the actually obtained proportion correct is too extreme, then
we decide to reject the hypothesis that θ = 0.5.

For the data in Figure 1, when we fix the number of tri-
als at N = 47, the obtained number correct of z = 32, or
an outcome more extreme, has a (two-tailed) probability of
p = .019. This “p value” means that if the null hypothesis
were true, that is if θ = 0.5, and if we repeatedly conducted
experiments with N = 47, then we would obtain accuracies
of z = 32 or more extreme (in both directions from the null)
only 1.9% of the time. This is such a small probability that
we declare the null hypothesis to be rejected. The usual cri-
terion for rejection is p < .05. For the data from Figure 2, the
result of z = 30 has (two-tailed) p = .079, and so we suspend
judgment. Notice that for both these data sets, the conclusion
from NHST agrees with the conclusion from Bayesian pa-
rameter estimation (and Bayesian model comparison, as will
be shown later). This agreement assures us that the Bayesian
analysis coheres with familiar NHST in this simple applica-
tion.

A summary of the definitions and procedures of NHST
appears in the left column of Figure 3. Notice how differ-
ent are the questions addressed by NHST and by Bayesian
parameter estimation, as shown in upper row. NHST asks
about the probability of extreme simulated data if the partic-
ular null value were true, whereas Bayesian parameter esti-
mation asks about the relative credibilities of all candidate
parameter values given the single set of actual data.

Unfortunately for NHST, the p value is ill-defined. The
conventional NHST analysis assumes that the sample size N
is fixed, and therefore repeating the experiment means gener-
ating simulated data based on the null value of the parameter,
over and over, every time with N = 47. But the data do not
tell us that the intention of the experimenter was to stop when
N = 47. The data contain merely the information that z = 32
and N = 47, because we assume that the result of every trial
is independent of other trials. The data collector may have
intended to stop when the 32nd success was achieved, and
it happened to take N = 47 trials to do that. In this case,
the p value is computed by generating simulated data based
on the null value of the parameter, over and over, every time
with z = 32 and N varying from one sample to another. For
this intention, the p value of the data is different than the p
value for fixed N because the sampling distribution is differ-
ent (e.g., Berger & Berry, 1988). There are many other stop-
ping intentions that could have generated the data. For exam-
ple, the experimenter may have collected data for 10 minutes.
In this case, the p value is computed by generating simulated
data based on the null value of the parameter, over and over,

every time for a duration of 10 minutes, with both z and N
varying from one sample to another. For this intention, the p
value of the data is different yet again (Kruschke, 2010a). It
is wrong to speak of “the” p value for a set of data, because
any set of data has many different p values, depending on the
intention of the experimenter. According to NHST, to deter-
mine whether a result has p < .05, we must know the inten-
tions of the data collector to stop data collection, even though
we also assume that the data are completely insulated from
the researcher’s intentions. (For a thorough compendium of
other problems with p values, see Wagenmakers, 2007)

The result of NHST also tells us little about the range of
uncertainty in the parameter estimate. The analysis leading
to NHST produces a single best estimate of the parameters,
but no indication of what other parameter values are credible.
The confidence interval does not provide that information.
The confidence interval indicates merely which parameter
values would not be rejected by NHST. Because the limits
of the confidence interval are based on p values, the limits
depend on whether N is fixed or z is fixed or N was random,
etc., just like p values do. Moreover, the confidence inter-
val provides no distribution of confidence in each parameter
value.

The result of NHST also provides only a decision to reject
the null, but no measure of credibility in favor of the null.
Both Bayesian approaches do provide methods for accepting
the null value. As described in the previous section, Bayesian
parameter estimation indicates how much of the posterior
distribution is practically equivalent to the null value (i.e.,
the area under the posterior distribution within the ROPE).
As will be explained in detail later, Bayesian model compar-
ison indicates the credibility of the null hypothesis relative to
a particular alternative hypothesis.

Because NHST can only reject the null, it suffers from
the peril of “sampling to a foregone conclusion” (e.g.,
Anscombe, 1954; Cornfield, 1966). A researcher can sim-
ply keep collecting data, testing for p < .05 based on the
current N, and eventually reject the null, even if the null hy-
pothesis is true. In other words, the probability of rejecting
the null hypothesis keeps rising as more data are collected,
even when the null is true. Neither Bayesian parameter esti-
mation nor Bayesian model comparison suffers this problem.
In both Bayesian approaches, there is a moderate probability
of falsely rejecting the null when the sample size is small.
But as more and more data are collected, the posterior tends
to become narrow and close to the null value. The posterior
therefore tends to fall inside the ROPE and therefore the null
hypothesis is accepted. In other words, for both Bayesian
approaches, a researcher who keeps assessing the credibility
of the null after every datum has only a limited probability of
falsely rejecting the null.2

2 The ROPE is sometimes left unstated in decisions from
Bayesian parameter estimation, so that readers can use their own
ROPEs, but a non-zero ROPE is needed to prevent sampling to
a foregone conclusion. When the ROPE has width zero, then
Bayesian parameter estimation can never accept the null, and the
null will eventually be rejected with sequential sampling. Using a
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Summary
Although NHST for these simple data sets agrees with the

conclusions from Bayesian analysis, the agreement does not
imply that NHST is as useful as Bayesian analysis. NHST is
based on ill-defined p values, so we cannot even know what
the p value of a set of data is. NHST provides no distribution
of credible parameter values. NHST provides no measure
of evidence in favor of the null. These contrasts in results
and interpretation are summarized in the lower rows of Fig-
ure 3. Moreover, NHST suffers from a 100% false alarm
rate when testing after every subsequent datum is collected,
unlike Bayesian methods.

Bayesian model comparison
As mentioned in the beginning of the article, Bayesian in-

ference consists of re-allocating credibilities across a set of
possibilities. In the case of Bayesian parameter estimation,
the possibilities consisted of all candidate parameter values
on a continuum. After data were observed, credibility was re-
allocated toward parameter values that were consistent with
the data. We now consider a new scenario in which the possi-
bilities are different prior distributions on the parameter val-
ues. One prior distribution expresses the null hypothesis, and
another prior distribution expresses an alternative (non-null)
hypothesis. We might start with 50-50 credibility on the two
hypotheses, and upon observing data, Bayesian inference re-
allocates credibility across the two hypotheses.

As an example, consider again the scenario in which an
observer correctly discriminates 32 stimuli in 47 trials, illus-
trated in Figure 1. Previously we considered the flat prior
in the upper-left panel. By contrast, the top-right panel of
Figure 1 shows the null-model prior distribution, in which
the credibility of every value of θ is zero except for θ = 0.5.
Bayesian inference proceeds as before, and the posterior dis-
tribution is displayed in the lower-right panel. Because the
null-model prior distribution is zero everywhere except for
θ = 0.5, the posterior is also zero everywhere except for
θ = 0.5 (recall Equation 1). Therefore we cannot use the null-
model prior to estimate the value of the parameter. Instead,
we consider a measure of how well the null-model prior dis-
tribution accounts for the data, relative to other model prior
distributions.

Our measure of the evidence for a model is just the prob-
ability of the data p(D|θ), averaged across all values of θ
weighted by the prior credibility of the values of θ. This
prior-weighted average makes intuitive sense because it im-
plies that a model that accounts for data by using credible
parameter values is a good model, but a model that accounts
for data by using only incredible parameter values is a poor
model. Moreover, the measure provides a natural penalty for
vague priors that allow a broad range of parameter values,
because a vague prior dilutes credibility across a broad range
of parameter values, and therefore the weighted average is
also attenuated.

Because we will be dealing with more than one model’s
prior distribution, we will explicitly denote the model index
as m. We then formally define the evidence for model m as

the prior-weighted average, p(D|m) =
∫

dθ p(D|θ,m) p(θ|m),
which is just the sum, across values of θ, of the likelihood
of θ times the prior credibility of θ in model m. This ev-
idence, it turns out, is exactly the denominator of Bayes’
rule in Equation 1. The value of p(D|m) is displayed in
the panels of Figure 1 that plot the posterior. In particular,
the lower-right panel indicates that the evidence for the null-
model prior distribution is p(D|null) = 7.11e−15 (which is
just 0.532(1 − 0.5)(47−32)). This value may seem small, but
its absolute magnitude has little direct interpretation. The
value is meaningful primarily only in comparison with other
models.

The lower-left panel of Figure 1 shows the evidence for
the alternative-model flat prior. It turns out that the evidence
for the alternative-model flat prior is p(D|flat) = 2.77e−14,
which is quite a bit larger than the evidence for the null-
model spike prior. How do we interpret the relative evi-
dences? Bayes’ rule provides the answer, as follows. We are
interested in how to re-allocate credibility across the mod-
els. We start with a prior credibility of each model, denoted
p(m j). For example, we might start with equal prior credibil-
ities so that p(m1) = p(m2) = 0.5. According to Bayes’ rule,
p(m j|D) = p(D|m j)p(m j)/pm(D), where pm(D) is the aver-
age probability of the data across all the models. Applying
the rule to each model and setting the results in a ratio yields:

p(m1|D)
p(m2|D)︸    ︷︷    ︸

posterior odds

=
p(D|m1)
p(D|m2)

p(m1)
p(m2)

/ pm(D)
pm(D)︸ ︷︷ ︸
= 1

=
p(D|m1)
p(D|m2)︸    ︷︷    ︸

BF

p(m1)
p(m2)︸ ︷︷ ︸

prior odds

(2)

The ratio marked “BF” is the Bayes factor for the model
comparison. Notice that it consists of the ratio of the evi-
dences for the models. Ultimately we are interested in the
posterior odds of the two models, but by reporting the BF,
any reader can use their own prior odds to determine the pos-
terior odds. Hence the BF is conventionally used as mea-
sure of model comparison. The threshold for declaring a
comparison to be “substantial” is conventionally taken to be
BF = 3.0 (Jeffreys, 1961; Wetzels et al., 2011). In the
example of Figure 1, we have BF = p(D|flat)/p(D|null) =
2.77e−14/7.11e−15 = 3.90. Because the BF exceeds 3.0, we
declare that we have substantial evidence against the null-
model spike-prior distribution, in favor of the alternative-
model flat-prior distribution. In the example of Figure 2, we
have BF = p(D|flat)/p(D|null) = 7.6e−15/7.11e−15 = 1.07,
whereby we declare that the BF is not substantial. Notice
that in both examples, the conclusion from the BF matches
the conclusion from parameter estimation. Despite the agree-
ment in conclusions, it is important to recognize that the BF
by itself does not entail explicit posterior distributions on the
parameter values.

ROPE of width zero is tantamount to giving zero prior credibility
to the null value, hence the null value can only have zero posterior
credibility.
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Figure 4. For a description of the panels, see the caption of Figure 1. The left column uses an uninformed Haldane prior recommended by
Lee & Wagenmakers (2005); the middle column uses a null prior; the right column uses an informed prior. The data consist of 330 correct re-
sponses in 600 trials. The Bayes factor of the null prior relative to the Haldane prior is p(D|null)/p(D|Haldane) = 2.42e−181/4.42e−182 = 5.48,
which is interpreted as substantial evidence in favor of the null. The informed prior in the upper right uses previous research to establish a
prior gently peaked over parameter values slightly above the null value. The Bayes factor of the informed prior relative to the null prior is
p(D|informed)/p(D|null) = 1.34e−180/2.42e−181 = 5.54, which is interpreted as substantial evidence against the null. Notice that while the
Bayes factors change dramatically when the alternative prior changes from Haldane to informed, the 95% HDI barely changes at all. For
either the flat or informed priors, the posterior estimate of θ indicates a credible range of about 0.51 to 0.59, which overlaps the ROPE.

Summary
The definitions and procedures for Bayesian model com-

parison are summarized in the right column of Figure 3. No-
tice in particular how different are the questions addressed by
Bayesian parameter estimation and Bayesian model compar-
ison (top row of Figure 3). Notice also how different are the
contents of the results. Bayesian parameter estimation yields
a posterior distribution of credibilities over candidate param-
eter values, whereas Bayesian model comparison yields only
the the relative credibilities of the two model’s prior distribu-
tions.

Model comparison depends on the models com-
pared

In Bayesian model comparison, the Bayes factor (BF) in-
dicates merely the relative evidences for the two models.
There is no such thing as the unique BF for the null-model

spike prior; instead, there is only a BF of the null-model
spike prior relative to a particular alternative-model prior dis-
tribution. The magnitude of the BF can vary dramatically de-
pending on the choice of alternative-model prior distribution.
For a model comparison to be meaningful, the alternative-
model prior distribution must be genuinely representative of
a viable theory. The flat prior is a convenient default for
representing uncertainty when we have no prior information
about the source of the data, and there are a variety of other
ways to define an uninformed prior (Kass & Wasserman,
1996). But an uninformed prior might not be truly represen-
tative in realistic applications. For example, when measuring
accuracy in a discrimination task that has been used in pre-
vious research, we may have prior knowledge that accuracy
will be around 65% and not much less than chance (50%)
and not very close to perfect.

As an example of the sensitivity of the BF to the choice
of alternative-model prior distribution, consider the situa-
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tion depicted in Figure 4. The scenario is motivated very
loosely from an experiment by Bem (2011), discussed by
Wagenmakers, Wetzels, Borsboom, and van der Maas (2011)
and by Rouder and Morey (2011). At issue is the measure-
ment of “psi,” which in this case is the ability to anticipate
events in the future. Specifically, observers make a response
temporally before the stimulus appears (and even before the
stimulus is randomly selected by the computer). For particu-
lar stimuli and observers, the percent correct is slightly above
chance. For purposes of illustration, we suppose that there
are 330 correct responses out of 600 trials. The left column
of Figure 4 uses a type of uninformed prior recommended by
Lee and Wagenmakers (2005), called a Haldane prior.3 The
center column uses the null-model spike prior. The Bayes
factor of the null-model spike prior relative to the alternative-
model Haldane prior is p(D|null)/p(D|Haldane) = 2.42e−
181/4.42e−182 = 5.48, which is interpreted as substantial
evidence in favor of the null-model spike prior.

The Haldane prior is not representative of the psi hypoth-
esis, however. Extensive previous research suggests that the
magnitude of the effect is small, perhaps as shown in the
top-right panel of Figure 4. This expression of the prior for
the alternative-model psi hypothesis has maximal credibil-
ity a little under 55%, with most of the prior lying between
θ = 0.4 and θ = 0.7. The BF of this realistically informed
alternative-model prior relative to the null-model spike prior
is p(D|informed)/p(D|null) = 1.34e−180/2.42e−181 = 5.54,
which is interpreted as substantial evidence against the null-
model spike prior. Thus, the BF for the null model depends
strongly on the alternative model to which the null model is
compared.4 For an extended discussion with consideration of
general model comparison, see Liu and Aitkin (2008). For
a discussion of the importance of using informed priors in
model comparison, see Vanpaemel (2010).

The examples used in the previous sections have used a
simplistic situation for ease of explanation. Both Bayesian
parameter estimation and Bayesian model comparison can
be applied to more complex models. In particular, when
analyzing a metric dependent variable (instead of data with
two nominal values), we might model the data with a normal
distribution and estimate its mean parameter and standard-
deviation parameter. In this situation, analogous issues arise
in establishing the null-model and alternative-model priors
for a Bayesian model comparison. For example, Rouder,
Speckman, Sun, Morey, and Iverson (2009) and Wetzels,
Raaijmakers, Jakab, and Wagenmakers (2009) present meth-
ods for a “Bayesian t-test” that allow the user to specify the
flatness of the alternative-model prior. Dienes (2011, Ap-
pendix) provides an example of estimating a metric effect
magnitude, in which the choice of alternative-model prior
dramatically changes the direction of the Bayes factor, and
for which his more flexible Bayes-factor calculator is ap-
propriate. When the data also involve a metric predictor,
we might model the data with linear regression, including
a slope parameter. Dienes (2008, Ch. 4) shows an exam-
ple of how the Bayes factor on the slope parameter depends
strongly on the choice of alternative-model prior.

Relation of Bayesian parameter
estimation to Bayesian model

comparison

We have now seen two Bayesian approaches to assess-
ing null values. In parameter estimation, Bayesian infer-
ence re-allocates credibility across values of the parameter.
In model comparison, Bayesian inference re-allocates cred-
ibility across candidate priors. Relations between the two
approaches are explored in this section. Figure 3 juxtaposed
the two approaches, pointing out their differences.

Decisions from the two approaches can agree or
not

We have seen two examples in which the conclusions from
parameter estimation and model comparison agree. Figure 1
showed a case in which both parameter estimation and model
comparison rejected the null. Figure 2 showed a case in
which both parameter estimation and model comparison did
not reject the null.

We have also seen an example in which the conclusions
from model comparison change when the alternative-model
prior changes, but the conclusions from parameter estimation
are relatively stable. Figure 4 showed an uninformed prior in
its left column, an informed prior in its right column, and the
null-model prior in the center column. The BF of null model
relative to alternative model depended strongly on the choice
of alternative-model prior. But look at the explicit posterior
estimates of θ in the lower-left and lower-right panels, and
notice that the posterior HDIs from the two alternative priors
are virtually the same. The HDI overlaps the ROPE, and the
posterior distribution provides an explicit representation of
our uncertainty in θ. In this case, because of the large sample
size (which produces a narrow likelihood function) and rel-
atively uncertain priors, the posterior parameter distributions
are dominated by the data. On the contrary, the evidences
depend strongly on the priors because the evidences compute
the prior-weighted average of the likelihood.

The two approaches in a unified hierarchical
model

The two Bayesian approaches to assessing null values
can be unified in a single hierarchical model. In general,
Bayesian model comparison can be construed as the hierar-
chical structure illustrated in Figure 5. At the highest level,
the models are indexed by a categorical parameter m. At the

3 The Haldane prior is the beta-distribution that has the least in-
fluence on the posterior, in the sense of making the maximum like-
lihood estimate equal the mean of the posterior estimate; see Zhu
and Lu (2004).

4 On the day that the final version of this article was composed,
the author learned of a draft version of Bem, Utts, and Johnson
(submitted) which independently makes a similar argument. The
argument regarding alternative-model prior distributions is distinct
from other important points, regarding exploratory research, re-
emphasized by Wagenmakers, Wetzels, Borsboom, Kievit, and van
der Maas (submitted).
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Figure 5. Hierarchical dependencies among models, parameters, and data. At the bottom of the diagram, the data D are shown to depend on
the likelihood function p(D|parameter,model) within each model. The parameter values in model m1 are denoted θi, ..., θ j, and the parameter
values in model m2 are denoted by the different variable φi, ..., φ j (Greek letter phi), to indicate that different models can have different
parameters. The parameter in a likelihood function depends on the prior distribution p(parameter|model) for the parameter values within the
model. The model index m in turn depends on the prior for the model indices, p(model). Bayesian inference simultaneously estimates the
credibility of each model index and the credibility of each parameter value within models. (There are some technical aspects glossed over
here; further details can be found in Chapter 10 of Kruschke, 2011)

Figure 6. Special case of Figure 5 in which the two models differ only in their prior distributions, and one model’s prior is a spike over the
null value. Graphs of priors and likelihood function come from the example in Figure 1. The two models have the same likelihood function:
p(D|θ,m1) = p(D|θ,m2). The two models differ only in their priors: p(θ|m1) is a flat prior and p(θ|m2) is a spiked prior at the null value of
θ = 0.5.

next lower level, within each model there are model-specific
parameters. Bayesian inference operates simultaneously on
all the parameters in the hierarchical model, re-allocating
credibility across the values of the model-index parameter
and across the values of the parameters within models. The
caption of Figure 5 provides some more details. In general,
the posterior-odds ratio of two models is simply the ratio of
the posterior probabilities of the model indices. If the prior
credibilities of the model indices are equal, then the ratio of
the posterior probabilities of the model indices also equals
the BF of the models.

Bayesian model comparison for assessing null values is a
special case of the structure in Figure 5, in which the mod-
els use the same likelihood functions (and hence the same
parameters), and differ only in the prior distributions within
each model. An example is shown in Figure 6. Bayesian
inference can simultaneously produce the posterior distribu-
tions over the parameter values within models (shown in the
bottom graphs of Figure 1) and the posterior distribution over
the model indices, as governed by the evidences p(D|m).

Thus, model comparison and parameter estimation can be
done simultaneously (for a discussion of technical details,
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see Ch. 10 of Kruschke, 2011), but the two approaches for-
mulate the assessment of null values in different ways. For
model comparison, the “null” is a prior distribution across
parameter values for which all values but the null value have
zero prior credibility. For parameter estimation, the “null” is
a specific parameter value, not a prior distribution. For model
comparison, the credibility of the null model is measured in
terms of the relative credibilities across model indices. For
parameter estimation, the credibility of the null value is mea-
sured in terms of the posterior distribution of the parameter
within the single model that used the viably informed prior,
without reference to a null-hypothesis prior. (Figure 3 sum-
marizes these differences without reference to the unifying
hierarchical framework.)

Therefore, if you want to know about the credibility of the
null value within a posterior generated from a viable prior,
use the parameter estimation approach. If you want to know
about the credibility of the null-model prior distribution rel-
ative to an alternative-model prior distribution (e.g., an au-
tomatic uninformed prior), use the model comparison ap-
proach. Even though the two approaches can be done simul-
taneously within a hierarchical framework, they formulate
the assessment of the null at different levels and therefore the
conclusions from the two approaches do not need to be the
same.

Multiple comparisons across
conditions

The difference between parameter estimation and model
comparison can be especially pronounced in the case of mul-
tiple comparisons across conditions of an experiment. (The
application of NHST to multiple comparisons will not be fur-
ther discussed here because it has severe perils; see, e.g.,
Kruschke, 2010a, 2011) Consider an experiment with four
conditions and several observers randomly assigned to each
condition, in which we measure response time as a depen-
dent variable on many repeated trials for each observer. To
analyze the data, the first step is creating a descriptive model
that parameterizes the trends of interest. We would create a
model that has (a) parameters for the central tendency and
variability across trials of each observer, and (b) higher level
parameters that describe the central tendency and variabil-
ity across observers within a condition, and (c) yet higher
level parameters that describe the overall central tendency
and variability across conditions (Ch. 18 of Kruschke, 2011;
Rouder, Lu, Speckman, Sun, & Jiang, 2005)

Having established a descriptive model for the conditions,
we can then ask whether there are credible differences in the
parameters that describe the central tendencies of the condi-
tions. In the parameter-estimation approach, we set a prior
distribution on the parameters that is agreeable to a skepti-
cal audience. The prior might be well-informed by previous
research, or only weakly informed by previous knowledge
that human response times in the task are on the order of 1
sec., not nanoseconds or eons. We then simply examine the
posterior distribution on the parameters and examine the re-
lationship of a ROPE around a difference of zero to the HDI

of the credible differences (e.g., Gelman, Hill, & Yajima,
2011; Kruschke, 2010b, 2011). This process can be applied
to any differences of interest, including pairwise differences
and complex contrasts among combinations of groups.

In the model comparison approach, we establish many dif-
ferent priors that describe different combinations of condi-
tions with zero difference. To answer the general question of
which groups are different, we establish a distinct prior for
each possible combination of group equalities. For exam-
ple, an experiment with four conditions requires 15 models:
One model with the same central tendency parameter for all
four conditions, four models with one central tendency pa-
rameter for one condition and a second central tendency pa-
rameter for the other three conditions, three models with one
central tendency parameter for two conditions and a second
central tendency parameter for the other two conditions, six
models with three distinct central tendency parameters, and
one model with four different central tendency parameters.
(For experiments with more conditions, or more factors, the
number of models grows larger. In practice this large-scale
model comparison may be too computationally demanding
for desktop computers, depending on the particulars of the
model.) Within each of the fifteen models, automatic vague
priors can be used for the parameters. There must also be
established a prior on the model index; a flat prior can be
used for simplicity, such that p(m1) = ... = p(m15) = 1/15.
Bayesian inference then produces a posterior distribution on
the model indices, and we can assess which models, if any,
dominate the posterior.

As was emphasized in previous sections, the conclusions
from the model-comparison approach should be interpreted
with caution, because the results only tell us about the rela-
tive credibilities of the particular models with their particular
priors. For example, consider a situation with four condi-
tions, and in which the data indicate that three of the con-
ditions have similar central tendencies but the fourth condi-
tion is notably different. A Bayesian model comparison that
pits a model with four distinct central tendency parameters
against a model that has a single shared central-tendency pa-
rameter for all four groups could strongly prefer the single
parameter model, even though a direct parameter estimation
shows that the fourth condition is credibly different from the
others (Kruschke, 2011, Section 12.2.2). The reason for the
strange result from the model comparison is that the four-
parameter model is penalized for diluting its prior over so
many parameters. Presumably, the model that has a shared
central tendency parameter for the first three conditions, and
a distinct central tendency parameter for the fourth condition,
would be preferred to the single central-tendency model. But
even if that were the case, would we actually want to en-
dorse the winning model? Not necessarily, because the win-
ning model asserts that the first three conditions are literally
identical. In most applications, we know in advance that the
three different conditions are indeed different, and therefore
must have a least some small differences. Thus, it could be
that the models (or the priors on parameters within models)
do not represent viable hypotheses, and therefore the poste-
rior credibilities on the model indices tell us only the relative
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credibilities of meaningless models.
The parameter estimation approach, in contrast, provides

us with explicit estimates of the magnitudes of differences
between conditions, starting with a viable informed prior, us-
ing a single model. From the posterior distribution we can as-
sess all the comparisons in which we are interested, without
having to construct a distinct model to express the contrast.

While parameter estimation may be a richer way than
model comparison to assess differences between groups,
both of these Bayesian methods address the issue of inflated
false alarm rates more rationally than corrections for multiple
comparisons in NHST. No analysis method can completely
avoid false alarms, because they are caused by accidental co-
incidences of rogue values in the random sample of data. But
the methods for mitigating false alarms are quite different in
Bayesian analysis and NHST. False alarms are handled in
NHST by considering which comparisons the analyst intends
to make, such that a more inquisitive analyst pays the price
of more stringent criteria for declaring significance of differ-
ences. For an overview of corrections for mulitple compar-
isons in NHST, see Ch. 5 of Maxwell and Delaney (2004),
and for a discussion of contrasting intuitions in multiple test-
ing, see Dienes (2011).

By contrast, Bayesian analysis uses hierarchical models
to express prior knowledge that data from one group can in-
form estimates of the other groups (e.g., Gelman et al., 2011;
Kruschke, 2011). In particular, if data from several groups
indicate similar central tendencies, this consistency implies
that estimates of other group’s central tendencies should be
pulled toward the overall average. The resulting shrinkage of
estimates reduces the probability of false alarms. In Bayesian
analysis, false alarms are mitigated through information in
the prior structure and in the data, with no reference to what
comparisons the analyst might or might not intend to make.

Conclusion

This article has explained two Bayesian approaches to as-
sessing null values. The parameter-estimation approach ex-
amines whether the null value is among the most credible
values in a posterior distribution. The model-comparison ap-
proach assesses whether a null-model spike prior is more
credible than a particular alternative-model prior. Exam-
ples of the two approaches were provided. The examples
were also analyzed by NHST, which suffers many prob-
lems. The two Bayesian approaches were unified in a hi-
erarchical model that executes both approaches simultane-
ously at different levels in the model. The two Bayesian
approaches were applied to more complex designs involv-
ing multiple comparisons, where the model-comparison ap-
proach requires construction of many different models which
may have limited prior viability. The remainder of this con-
cluding section highlights the complementary strengths of
the two Bayesian approaches, and emphasizes that both are
better than NHST.

Either Bayesian approach is better than NHST
Either Bayesian approach is superior to NHST. As was

emphasized earlier in the article, in NHST it is impossible
to decide whether p < .05 because p itself is ill-defined and
cannot be uniquely calculated. NHST yields no measure of
the relative credibility of null and alternative models, and
NHST yields no measure of the credibilities of different can-
didate parameter values. NHST suffers from sampling to a
foregone conclusion. For multiple comparisons, NHST uses
intention-based corrections while Bayesian analysis uses ra-
tionally informed shrinkage.

Bayesian parameter estimation or model compari-
son?

As was emphasized by the juxtaposition in Figure 3, and
by the different levels of the unifying hierarchical model
(Figures 5 and 6), the two Bayesian approaches pose the
question of null-value assessment in different ways. There-
fore, the two approaches also provide different kinds of an-
swers. The model-comparison approach yields information
about the relative credibility of a null-model prior versus a
particular alternative-model prior. Both models need to have
prior viability for the comparison to be meaningful. The
parameter-estimation approach yields information about the
relative credibilities of all the values of the parameters within
a single model. The credibility of the null value is then ex-
amined.

For moderately complex and realistic applications, the
parameter-estimation approach is the more direct, simple,
and informative approach. Parameter estimation is more di-
rect because it yields an explicit posterior distribution over
all the parameter values, which can be directly examined to
assess the credibility of the null value. Model comparison,
on the other hand, yields only a Bayes factor (BF) for the
null-model prior relative to a specific formulation of an alter-
native model, without explicit estimates of parameter values.
Parameter estimation is simpler because Bayesian inference
on a single model, using a single informed prior, produces
a complete conjoint posterior distribution on all the parame-
ters, that can be examined for any parameter differences that
may be of interest. Model comparison, on the other hand,
requires a separate model for every comparison of interest.
Parameter estimation is more informative because it yields
an explicit conjoint posterior distribution over all the param-
eters in the model. The posterior distribution tends to be ro-
bust against changes in the prior when the amount of data
is moderately large and the prior is not severely specific, as
was shown in Figure 4. Model comparison, on the other
hand, can generate BFs that are very sensitive to the choice
of alternative-model prior (again as discussed with Figure 4).

Both the parameter-estimation and model-comparison ap-
proaches solve the problem of sampling to a foregone con-
clusion that is suffered by NHST. That is, if a researcher
keeps collecting data and tests for rejecting the null after ev-
ery new datum, the null will eventually be rejected in NHST
even if the null is true, but the probability of that happen-
ing in the Bayesian procedures is far less than 100%. Both
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Bayesian procedures provide a measure of the strength of the
null hypothesis, unlike NHST. In Bayesian parameter esti-
mation, the strength of the null hypothesis can be assessed as
the proportion of the posterior inside the ROPE, that is, the
proportion of the posterior that is practically equivalent to the
null value. This proportion can be highly sensitive to the lim-
its of the ROPE. In Bayesian model comparison, the strength
of the null hypothesis is assessed by the BF of the null model
relative to a particular alternative model. The magnitude of
the BF can be highly sensitive to the choice of alternative-
model prior. Although both Bayesian procedures yield a
measure of the strength of the null, the model-comparison
approach may do so more transparently insofar as the choice
of alternative-model prior may be easier to justify than the
choice of ROPE. The model-comparison approach may also
yield strong evidence in favor of the null model with smaller
data sets than the parameter estimation approach because
achieving HDIs narrower than the ROPE may demand very
large sample sizes. Therefore, if the researcher is specif-
ically interested in showing evidence in favor of the null,
the model-comparison approach may be more powerful, as
long as the alternative-model prior is carefully justified. This
recommendation is tempered for complex applications such
as multiple parameter comparisons in ANOVA, however,
which demand many different model comparisons but only
one explicit parameter estimation. Moreover, the model-
comparison approach does not yield an explicit estimate of
the credible values of the parameters, which may be quite
uncertain even if the BF is large.

In conclusion, unlike NHST, Bayesian formulations of
data-analytic questions provide rational and richly informa-
tive answers. When the question is about null values, there
are two Bayesian formulations that ask the question at dif-
ferent levels and provide correspondingly different types of
information. This article has argued that the parameter-
estimation approach is generally the more informative pro-
cedure, but the model-comparison approach can be useful in
specific situations.
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Introduction to special section on Bayesian data analysis 

John K. Kruschke 

Indiana University, Bloomington 

Psychologists are trained to think of research design and analysis as a procedure for rejecting null 

hypotheses. Is the difference between two groups non-zero? Is the correlation between two measures 

non-zero? Is the proportion of correct responses different than the chance (null) value of 0.5? This 

framing of research questions is driven largely by an institutionalized method of statistical inference, 

called null hypothesis significance testing (NHST). There are many deep problems with NHST (e.g., 

Kruschke, 2010; Loftus, 1996; Wagenmakers, 2007). Some of the problems are that NHST does not tell 

us what we want to know. For instance, the p value of NHST tells us about the probability of possible 

data that we did not observe, instead of about the probabilities of hypotheses given the data we did 

observe. And some of the problems of NHST are more foundational. For instance, the p value is not even 

well defined, because its value depends on the covert intentions of the data collector, such as why data 

collection was stopped and what other tests were planned. 

Bayesian data analysis offers an alternative approach that solves the problems of NHST, and also 

provides richer, more informative inferences and more flexible application. Bayesian data analysis is 

now accessible to psychologists because of recent advances in computational algorithms, software, 

hardware, and textbooks. Indeed, while the 20th century was dominated by NHST, the 21st century is 

becoming Bayesian (as forecast by Lindley, 1975). As psychologists transition to Bayesian data analysis, 

they might retain the habit of inquiring after null values (instead of asking about magnitudes of effects 

and regions of uncertainty). How does Bayesian data analysis address questions about null values? This 

special section discusses answers to that question.  

The article by Dienes (2011) shows how Bayesian inference is intuitively more coherent than NHST. The 

discussion focuses on fundamental research questions such as, should the reason for stopping collection 

of data affect the interpretation of the data? Should the motivation for conducting a test (e.g., knowing 

or not knowing of a theory that predicts a difference) affect the interpretation of the test? Answers to 

these questions from common practice and educated intuition align with normative Bayesian inference, 

not with NHST. 

Dienes (2011) also explains one method for conducting a Bayesian hypothesis test. In this method, the 

null hypothesis is pitted against an alternative hypothesis in which a range of candidate values is given 

prior credibility. Bayesian inference indicates which hypothesis is more credible, given the data. The 

relative credibility of the two hypotheses is indicated by the so-called Bayes factor. Dienes (2011) 

explains how the Bayes factor can be influenced by the specific formulation of the alternative 

hypothesis, which should be an informed expression of the meaningful alternative theory being tested. 

The article by Wetzels et al. (2011) shows how so-called default Bayes factors generally correlate well 

with conclusions from NHST, in a survey of hundreds of published t tests. A default Bayes factor uses an 

alternative hypothesis established by generic mathematical properties, such as invariance under 
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changes in scale, instead of by theoretical meaning. Whereas default Bayes factors correlate strongly 

with p values, the conventional thresholds for declaring significance are noticeably different. Bayes 

factors require stronger data for significance than NHST p values. Wetzels et al. (2011) also emphasize 

that Bayes factors can provide evidence in favor of the null hypothesis, unlike NHST which can only 

reject the null hypothesis. 

The article by Kruschke (2011a) juxtaposes the Bayes-factor approach with a more common Bayesian 

approach called parameter estimation. In parameter estimation, the analyst asks the straight-forward 

question: What are the relative credibilities of all possible values? The Bayesian answer provides an 

explicit probability distribution that indicates not only the best value but also the relative veracity of all 

other values, including the null value. Kruschke (2011a) explains how the two Bayesian methods ask 

different questions that may be applicable to different circumstances, but he argues that Bayesian 

parameter estimation is generally the more useful and informative method. 

The method of parameter estimation is used in numerous major textbooks on Bayesian data analysis 

(e.g., Bolstad, 2007; Carlin & Louis, 2009; Christensen, Johnson, Branscum, & Hanson, 2010; Gelman, 

Carlin, Stern, & Rubin, 2004; Gelman & Hill, 2007; Jackman, 2009; Kruschke, 2011b; Ntzoufras, 2009). 

Notably, among those textbooks, the application of Bayes factors to null hypothesis testing is dwelled 

upon only by the author who is a psychologist (Kruschke, 2011b). For non-psychologists, Bayesian null 

hypothesis testing is an ancillary issue, unmentioned or treated only as needed in specific applications. 

Thus, part of the bigger transition to Bayesian thinking will be to stop automatically framing every 

research question in terms of rejecting a null hypothesis. 

In summary, the three articles of this section explore the intuitiveness of Bayesian inference, the 

consistency of Bayesian conclusions with conclusions from NHST, and the richness of Bayesian inference 

when used in its full-fledged form of parameter estimation and hierarchical modeling. From the 

perspective of the authors in this section, psychologists must transition away from thinking of research 

in the problematic NHST framework, toward thinking of research in the Bayesian framework. The 

articles in this section provide a stepping stone in that transition, offering Bayesian approaches to 

assessing null values, and acting as a gateway to the richness of Bayesian parameter estimation. 
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