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Posterior predictive checks can and should be
Bayesian: Comment on Gelman and Shalizi,
‘Philosophy and the practice of Bayesian statistics’

John K. Kruschke*
Department of Psychological and Brain Sciences, Indiana University, Bloomington,
USA

Bayesian inference is conditional on the space of models assumed by the analyst. The

posterior distribution indicates only which of the available parameter values are less bad

than the others, without indicating whether the best available parameter values really fit

the data well. A posterior predictive check is important to assess whether the posterior

predictions of the least bad parameters are discrepant from the actual data in systematic

ways. Gelman and Shalizi (2013) assert that the posterior predictive check, whether done

qualitatively or quantitatively, is non-Bayesian. I suggest that the qualitative posterior

predictive check might be Bayesian, and the quantitative posterior predictive check

should be Bayesian. In particular, I show that the ‘Bayesian p-value’, fromwhich an analyst

attempts to reject a model without recourse to an alternative model, is ambiguous and

inconclusive. Instead, the posterior predictive check, whether qualitative or quantitative,

should be consummated with Bayesian estimation of an expanded model. The conclusion

agrees with Gelman and Shalizi regarding the importance of the posterior predictive

check for breaking out of an initially assumed space of models. Philosophically, the

conclusion allows the liberation to be completely Bayesian instead of relying on a non-

Bayesian deus ex machina. Practically, the conclusion cautions against use of the Bayesian

p-value in favour of direct model expansion and Bayesian evaluation.

1. Introduction

Bayesian inference is conditional on the space of models assumed by the analyst. Within

that assumed space, the posterior distribution only tells us which parameter values are

relatively less bad than the others. The posterior does not tell us whether the least bad

parameter values are actually any good. Assessing the goodness of the least bad parameter

values is the job of the posterior predictive check. In a posterior predictive check, the

analyst assesses whether data simulated from credible parameter values resemble the
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actual data, with ‘resemblance’ measured in any way that is meaningful in the applied

context. If the resemblance is not good enough, then the analyst changes the model and

does Bayesian inference on the modified model. This cycle repeats until the resemblance

of the predicted data and the actual data is good enough for purposes of the application.
The posterior predictive check allows the analyst to solve the problem of being

confined within the initially assumed space of models. Gelman and Shalizi (2012, 2013)

emphasized that the posterior predictive check is a non-Bayesianprocess: ‘It is by this non-

Bayesian checking of Bayesian models that we solve our … problem’ (Gelman & Shalizi,

2013, p. 17). In particular, the goodness of the resemblance, between simulated and

actual data, is assayed in either of two non-Bayesian ways, qualitative or quantitative.

In the qualitative way of assessing resemblance between simulated and actual data,

the analyst can visually examine graphical or tabular displays to look for structured
patterns in the residuals between actual and simulated data. If there appears to be

structure in the residuals that meaningfully informs the interpretation of the model, then

the analyst can change the model so that it better captures the revealed trends. This

intuitive assessment uses no explicit, formal Bayesian calculations.

Although intuitive assessment of pattern is not formally Bayesian, some leading

theories in cognitive science assert that perception is well described as Bayesian

inference. Essentially, these theories propose that the mind has a vast library of candidate

perceptible patterns, with a distribution of prior credibilities across those patterns, and
the observed residuals are used to infer, in a Bayesianmanner, the posterior credibilities of

candidate patterns for the residuals. Thus,whenweperceive a pattern in the residuals, it is

because that pattern has a reasonably high posterior credibility among the various

patterns we have available in our perceptual space.

In the quantitativeway of assessing resemblance between simulated and actual data,

the analyst defines a formal measure of the magnitude of discrepancy between observed

data y and predicted values ŷ, denoted Tðy; ŷÞ. The observed data may be the actual data

from the empirical research and denoted yact , or the observed datamay be simulated from
the model and denoted yrep, where the superscript rep refers to ‘replication’. With many

replications of data simulated from posterior parameter values, a sampling distribution of

Tðyrep; ŷÞ is created. From that sampling distribution we compute the probability of

obtaining a value of T as big as or bigger than the actual one: pðT ðyrep; ŷÞ� Tðyact ; ŷÞÞ. This
probability is alsoknownas the ‘Bayesianp-value’. If theBayesianp-value is very small, then

we reject the model and search for something better. Gelman and Shalizi (2012, 2013)

point out that this procedure can reject a model without specifying an alternative model.

While this quantitative process is non-Bayesian, I show that its results are ambiguous
and undertaking it is unnecessary. Instead, a Bayesian procedure can yield clearer results.

Specifically, the analyst should create a formal model that addresses the perceived

discrepancy, and the expanded model can be assessed in a Bayesian fashion. This

approach avoids ambiguity in T, which could be a signature of many different underlying

structures. The expanded model is assessed by Bayesian parameter estimation, and does

not necessarily rely on Bayesian model comparison, which has problems of hypersen-

sitivity to priors (as pointed out by Gelman & Shalizi, 2013).

The restof this articleexpandsonthe two-prongedargumentoutlinedabove.Examples
of regression analysis are provided to illustrate ambiguous implications from T and p, but

clearer conclusions fromBayesian estimation of specific expandedmodels. The argument

agrees that a posterior predictive check is an important step in Bayesian data analysis, but

avers that a posterior predictive check need not be inherently non-Bayesian. Whether the

check of resemblance is qualitative or quantitative, it should be consummated by a formal
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specification of structure in an expanded or new model, with parameters estimated in a

Bayesian fashion. Thus, a posterior predictive check can and should be Bayesian.

2. A qualitative posterior predictive check can be Bayesian

In a qualitative posterior predictive check, the analyst displays the original data alongwith

the posterior predictions in some way that highlights potentially systematic discrepan-

cies. The display could be tabular or graphical, and can accentuate or attenuate different

aspects of the data and posterior predictions. Regardless of the exact nature of the display,

the human analyst must perceive systematic patterns in the discrepancies. What are the
possible patterns that a human can perceive? And of all those possible patterns, which

ones are most likely to be perceived when observing a display?

Some leading theories in cognitive science describe perception as Bayesian inference

(e.g.,Kersten,Mamassian,&Yuille, 2004;Knill&Richards, 1996; Shams&Beierholm, 2010;

Yuille & Kersten, 2006). According to this theoretical perspective, the mind has a vast

repertoireofpossibledescriptionsoftheworld,withinnateorpreviouslylearnedknowledge

providing a prior distribution over that space of perceptible patterns. When new stimuli

impinge upon the senses, the mind infers the most likely distal objects that may have
produced the sensory stimulus. The inference relies heavily onprior knowledge, and formal

Bayesianmodels have successfully accounted for many aspects of human perception.

One of the simplest examples of prior knowledge deployed in perception is the

interpretationof three-dimensional shape fromobservable shadingontheobject.Consider

Figure 1, which shows two circular regions spanned by gradients of grey. When the light

endof thegradient isat thetop,weperceive thecircular regionasaprotuberance,butwhen

the light end of the gradient is at the bottom, we perceive the circular region as an

indentation.This difference inperceptual interpretation is explainedby themindapplying
prior knowledge: illumination usually comes from above, as from the sun and sky. As

another example, consider the learning of functional relationships between input and

output values, such as drug dosage (input value) and symptom severity (output value).

People are taskedwith learning the relationship between the variables by observingmany

examples, and then their learned responses are used to teach new learners. After a few

generations, the learnedand retaught functionevolves intoa linear relationship, regardless

Figure 1. The circular region on the left is perceived as an indentation, while the circular region on

the right is perceived as a protuberance, even though the gradients of grey are identical except for

orientation. Perception apparently employs prior knowledge that illumination comes from above,

and that the surface itself has constant colour.
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of how it started, which reveals that linear relations are weighed heavily in learner’s prior

knowledge (Kalish, Griffiths, & Lewandowsky, 2007). While recent theories have given

explicit formalexpressiontotheideaofperceptionasBayesian inference, informal theories

of perception as inference go back at least toHelmholtz (1867), although it is doubtful that
Helmholtz had any explicitly Bayesian notions (Westheimer, 2008).

A variety of other aspects of cognition and learning have been modelled as Bayesian

inference (for overviews, see Chater, Tenenbaum, & Yuille, 2006; Jacobs & Kruschke,

2010). Recent work has shown that human perception of accidental coincidences versus

causes can bemodelled as Bayesian inference (Griffiths & Tenenbaum, 2007), and human

interpretation of many different data structures can be modelled as Bayesian inference

(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The issue of how the mind or brain

might implement Bayesian inference is one of current discussion and debate. Some
theorists suggest that themindmerely approximates Bayesian inference (Griffiths, Chater,

Kemp, Perfors, & Tenenbaum, 2010), but this particular approach may be unsatisfying

because many non-Bayesian algorithms are ‘approximately’ Bayesian without having any

necessary relation to Bayesian computation (Kruschke, 2010a). Another approach

suggests that the mind might be well described as Bayesian only within certain levels of

analysis, while larger-scale behaviour is not (Kruschke, 2006). Whatever the domain or

level of analysis, the goal for genuinely Bayesian models of cognition is discovering

functional forms and priors that closely mimic human behaviour.
Regardless of the ultimate veracity of any specific Bayesian model of perception or

cognition, the point of this section is that intuitive assessment of patterned discrepancies

could be Bayesian. There is nothing necessarily non-Bayesian in a qualitative posterior

predictive check. On the other hand, I am not claiming that qualitative posterior

predictive checking is in fact, or must be, well described as Bayesian inference. Indeed,

even if human perception and cognition – the engine of qualitative posterior predictive

checking – ultimately proves to be impossible to adequately model as Bayesian inference,

it is still appropriate to formally analyse scientific data with Bayesian methods (Kruschke,
2010b), and it is still the case that quantitative posterior predictive checking can and

should be Bayesian, as the next section illustrates.

3. A quantitative posterior predictive check should be Bayesian

As a concrete example to frame discussion, consider the data displayed in Figure 2. For
every individual,wemeasure a criterion value y thatwewish topredict froma valuex. The

conventional first approach would be simple linear regression with normally distributed

noise, expressed formally as

ŷ ¼ b0 þ b1x; ð1Þ

y�Nðŷ;rÞ; ð2Þ

where ŷ is the predicted value of y for predictor value x, b0 is the intercept, b1 is the slope,
and r is the standard deviation of the normal distribution.

For Bayesian estimation of the three parameters in equations (1) and (2), I began with

vague priors that had minimal influence on the posterior distribution. The analysis used

Markov chain Monte Carlo (MCMC) sampling by JAGS (Plummer, 2003) called from R (R

Development Core Team, 2011) via package rjags, with programs created in the style of
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Kruschke (2011b). Figure 2 shows plots of 30 credible regression lines superimposed on

the data. Displayed with each line are sideways plots of a normal distribution with the

corresponding standard deviation. The slope, intercept, and standard deviation of the 30

plots came from every (200,000/30)th step in the MCMC chain of 200,000 steps.

Visual inspection of the posterior estimates in Figure 2 suggests at least two

discrepancies between data and model. First, the data appear to be too tightly clustered
within vertical slices, relative to the spread of the posterior predicted normal

distributions. Second, the data also appear to have a slight upward curvature relative to

the linear predictions of the model.

Having noticed possible systematic discrepancies between the data and the posterior

predictions, what should we do next? One possibility is to create some measure of

discrepancy, Tðy; ŷÞ, that somehow captures the seemingly anomalous discrepancy. The

measure T does not need to express an alternative model; it merely needs to quantify the

discrepancy. We then generate the sampling distribution of T from the posterior
distribution, and assess whether pðTðyrep; ŷÞ� T ðyact ; ŷÞÞ is sufficiently small that we are

justified to look for a better model of the data. Gelman and Shalizi (2013, footnote 11) say

‘the tail-area probabilities are relevant [because] they make it possible to reject a Bayesian

model without recourse to a specific alternative’ and ‘What we are advocating, then, is

what Cox and Hinkley (1974) call “pure significance testing”, in which certain of the

model’s implications are compared directly to the data, rather than entering into a contest

with some alternative model’ (Gelman & Shalizi, 2013, p. 20).
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Figure 2. Data with posterior predictions, using linear regression with normally distributed

likelihood as defined in equations (1) and (2). The lines extending from left to right show a

smattering of credible regression lines from the MCMC chain. The vertical segments show 95%

highest density intervals (HDIs) with normal density functions (plotted sideways) having

corresponding credible standard deviations. The data appear to be too tightly clustered within

vertical slices, relative to the spread of the posterior predicted normal distributions. The data also

appear to have a slight non-linear trend.
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For example, supposewewant to define ameasure of upward curvature for the data in

Figure 2. For purposes of defining the measure of discrepancy, we will index the 50

observations from smallest x-value to largest x-value. Thus, hx1; y1i is the leftmost point,

and hx50; y50i is the rightmost point. Upward curvature implies that the left-hand end and
right-hand end points tend to be above the linear prediction, while middle points, namely

hx25; y25i and hx26; y26i, tend to be below the linear prediction. This signature of curvature

could be formalized as, say,

T ðy; ŷÞ ¼ ðy1 � ŷ1Þ þ ðy50 � ŷ50Þ � ðy25 � ŷ25Þ � ðy26 � ŷ26Þ: ð3Þ

Defining T in terms of ranked data has precedents in Gelman, Carlin, Stern, and Rubin

(2004). For example, when modelling a set of data with a normal distribution and

assessing leftward skew or outliers, one definition for T was simply
Tðy; ŷÞ ¼ y1 ¼ minðyÞ (Gelman et al., 2004, p. 160). For the same set of data, another

definition for Twas Tðy; ŷÞ ¼ jy61 � ŷj � jy6 � ŷj (Gelman et al., 2004, p. 164). Thus,

the form of definition of T in equation (3) is consistent with standard practice.

The value of T in equation (3) for the actual data in Figure 2 is greater than zero. In fact,

across all the credible parameter values in the 200,000-step MCMC chain, the average

value of Tðyact ; ŷÞ is 7.52, as shown in the left panel of Figure 3. This distribution and the

others in Figure 3 were created by generating a complete set of random data from the

model at every step in the 200,000-stepMCMCchain, and computing Tðyrep; ŷÞ, T ðyact ; ŷÞ,
and Tðyrep; ŷÞ � ðyact ; ŷÞ at every step. The fact that Tðyact ; ŷÞ is robustly greater than zero
indicates that it is a plausible signature of upward curvature. The expected value of

Tðyrep; ŷÞ, however, must be zero, because randomly generated values will be above or

below the prediction line equally often. This expected value is verified in themiddle panel

of Figure 3. The right panel of Figure 3 shows the sampling distribution of

Tðyrep; ŷÞ � ðyact ; ŷÞ, where it can be seen that the Bayesian p-value is .116, which is

not very small. In other words, from the definition of curvature in equation (3), wewould

not reject the linear model.
What arewe to conclude about curvature in the data, in light of this failure to reject the

linear model using a Bayesian p-value? Not much (in my opinion), because the visual

impression of discrepancy is very strong, andwe can always try some other definition of T.

Posterior Sampling Distribution

Tact
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Figure 3. Posterior sampling distributions of Tðyact ; ŷÞ, Tðyrep; ŷÞ, and T ðyrep; ŷÞ � T ðyact ; ŷÞ for T
defined in equation (3), from the posterior and data of Figure 2. ‘HDI’ denotes highest density

interval. In the right panel, the text ‘88.4% � 0 < 11.6%’ means that 88.4% of the distribution falls

below zero, and 11.6% of the distribution falls above zero. (Theoretically, T ðyrep; ŷÞ is symmetric

with a mean of 0.0. The histogram in the middle panel deviates slightly from the theoretical

characteristics because of random sampling noise.)
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Analysts who harbour a desire to reject the model can keep trying until they find a

definition of T for which p is small, while analysts who harbour a desire not to reject the

model can stop when they find a definition of T for which p is not very small.

Importantly, the goal of posterior predictive checking is not merely to reject the
model, because, as Gelman and Shalizi (2012, 2013) and Gelman et al. (2004) have

emphasized, we know in advance that the descriptive model is almost surely wrong for

real data. The goal of posterior predictive checking is to come up with a more satisfying

descriptive model of the data. Therefore we can simply side-step the process of arbitrarily

defining T, generating its sampling distribution and struggling with its ambiguous

implications. Instead, we should expand the descriptive model with explicit structural

terms that capture the trends in which we are interested.

The apparent discrepancy in Figure 2 can be directly expressed in an expandedmodel
that allows for non-linear trend and outliers. For example, we can directly express a

quadratic trend and a heavy-tailed distribution as

ŷ ¼ b0 þ b1x þ b2x
2; ð4Þ

y� tðŷ;r; mÞ; ð5Þ

whereb2 is thecoefficientofquadratic trendandm � 1isthedegreesof freedomparameter

for the tdistribution.The tdistribution isoftenusedas aconvenientdescriptivedistribution

for data with outliers (e.g., Damgaard, 2007; Jones & Faddy, 2003; Lange, Little, & Taylor,

1989;Meyer&Yu,2000;Tsionas, 2002).Whenm is large (e.g., 100), the tdistribution is very
nearly normal. When m gets close to 1, the t distribution is strongly kurtotic.

Figure 4 shows the results fromBayesian estimation of the five parameters in equations
(4) and (5). As before, the prior distributions were minimally informed, and the analysis

used MCMC sampling by JAGS (Plummer, 2003) called from R (R Development Core

Team, 2011) with programs in the style of Kruschke (2011b). Visual inspection of the

posterior estimates suggests that the model describes the data well: the data tend to be

tightly clustered near the quadratic curve, with only a few outliers accommodated by the

heavy-tailed distribution. (In fact, the data were randomly generated from exactly such a

model, and the Bayesian estimates recovered the generating values well. But we never

know the true generating model for real data.)
How do we know that the expanded model is better than the original model? In

principle, we could do Bayesian model comparison. But in practice, Bayesian model

comparison can be hypersensitive to the choice of prior distributions in the models, as

Gelman and Shalizi (2013) remind us. Therefore Bayesian model comparison is to be

avoided unless we have well-informed priors that put the two models on equal footing

(e.g., Kruschke, 2011a; Liu & Aitkin, 2008; Vanpaemel, 2010), which we do not have in

this case. Instead, because the models are nested in this case, we can simply see whether

the posterior estimates of the additional parameters are credibly non-zero. Figure 5
displays themarginals of the posterior distribution,where it can be seen that the quadratic

coefficient b2 is robustly non-zero. Thus, despite the fact that the Bayesian p-value did not

reject the linear model (recall Figure 3), an expanded model with an explicit quadratic

trend strongly does implicate non-linearity in the data.

As another illustrationof theperil of allowing arbitrarydefinitionsofTwithout a specific

alternativemodel,supposewelookatFigure4withtheaimoffindingevenmorediscrepancy

and rejecting the expanded model (perception of pattern is linked to motivation; e.g.,
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Figure 4. Datawith posterior predictions from quadratic regressionwith t-distributed likelihood as

defined in equations (4) and (5). The curves extending from left to right show a smattering of

credible regression lines from theMCMCchain. The vertical lines show95%highest density intervals

(HDIs) and t density functions with corresponding standard deviations and degrees of freedom. The

data appear to bewell described by theposterior prediction (which is fortunate, because this formof

model actually generated the data).

β0

−5.5 −5.0 −4.5 −4.0
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95% HDI
−5.19 −4.59

β1
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Figure 5. Marginals of the posterior distribution for the five parameters of equations (4) and (5), for

the data displayed in Figure 4. The histograms summarize anMCMC chain of 200,000 steps. The top

right-hand histogram shows that the quadratic coefficient b2 is credibly greater than zero. (The

displayed modes are approximated by a kernel density smoother.)
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Whitson & Galinsky, 2008). It appears that there is counterclockwise ‘torsion’ in the

residuals, such that there aremore outliers in the lower-left and upper-right quadrants near

themedian of x. Because I am not sure what I mean by this, in terms of an actual structural

trend expressed in a functional form, Iwill define a signature of the torsion as

Tðy; ŷÞ ¼ �
X17

i¼6

ðyi � ŷiÞ þ
X29

i¼28

ðyi � ŷiÞ: ð6Þ

The expression in equation (6) merely sums the residuals in a particular range below the

median of x and subtracts the result from the sum of residuals in a particular range above

the median of x. A posterior predictive check produces the posterior sampling
distributions shown in Figure 6. The Bayesian p-value is small, just .032. According to

conventional p-value criteria, this result should lead us to reject the model, without

recourse to a specific alternative.

But this conclusion seems unwarranted. In this case, we know that the data were

actually generated by the model that has been rejected, but this conflict is not the reason

for being sceptical, because for real data we do not know the true generator of the data.

The scepticism arises because the definition of Twas cherry-picked from a universe of all

possible definitions of T without any motivation other than trying to prove the model
wrong.

If I were forced to define a functional form for the structural trend of ‘torsion in

outliers’, I might attempt to use a likelihood distribution that has a skew parameter, with

the skewparameter functionally linked to the value of x, so that the skew is negativewhen

x is just below itsmedian, but positivewhen x is just above itsmedian. This expanded form

involves newparameters for skewand for the functional relation between skewand x, and

we would also have to specify a prior on the parameters of the expanded model. A prior

that would be agreeable to a sceptical audience might favour null values on the expanded
parameters because the model is so unusual. Even without a sceptical prior on the extra

parameters, there is increased uncertainty in the higher-dimensional parameter space,

hence it is less likely that the estimates of the extra parameters would be credibly non-

zero. Even though an expanded model might be deemed arbitrary like T, Bayesian

evaluation of the expandedmodel incorporates penalties for arbitrariness, unlike T. There

Posterior Sampling Distribution
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25 30 35 40

mean = 33.8

95% HDI
30.7 36.9

Posterior Sampling Distribution
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mean = 3.46
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−41.6 41.8

Posterior Sampling Distribution

Trep−Tact
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96.8% <= 0 < 3.2%

95% HDI
−75.9 7.72

Figure 6. Posterior sampling distributions of T ðyact ; ŷÞ, T ðyrep; ŷÞ, and Tðyrep; ŷÞ � Tðyact ; ŷÞ for T
defined in equation (6), from the posterior and data of Figure 4. ‘HDI’ denotes highest density

interval. In the right panel, only 3.2% of the distribution falls above zero. (Theoretically, T ðyrep; ŷÞ is
symmetric with a mean of 0.0. The histogram in the middle panel deviates slightly from the

theoretical characteristics because of random sampling noise in the extreme tails of the

distribution.)
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is a penalty from a sceptical prior and from increased uncertainty in a higher-dimensional

parameter space. Moreover, if Bayesian model comparison is undertaken with appropri-

ate caution, the diluted prior on the higher-dimensional parameter space automatically

penalizes themore complexmodel to fend off overfitting (often referred to as theBayesian
Occam’s razor effect, e.g., MacKay, 2003).

I have presented two examples in which the conclusion from a Bayesian p-value

conflicted with the conclusion from a Bayesian estimation of an expanded model. In

general, the conclusions from Bayesian estimation of an expanded model supersede the

conclusions of a corresponding Bayesian p-value. If the conclusions agree, the expanded

model and explicit posterior distribution provide rich structural definition that is more

specific than the ambiguous signature expressed by T. If the conclusions disagree, then

again we look to the explicit structural form of the expanded model, and its estimated
parameters, to better understand the data. If a Bayesianp-value is small and rejects amodel,

it merely confirms a foregone conclusion, and we still need an explicit structural form to

understand why. If a Bayesian p-value is large and does not reject a model, it might be

merely because the definition of T does not capture the structural form of the discrepancy

which would be apparent when estimated in an explicit expanded model.

4. Summary and conclusion

In typical research, the models we use to describe data are selected because of their

familiarity from previous training, tractability in computation, and prior probability of

describing trends we care about in the specific application. But we know in advance that

the models are merely descriptive, and that the data were almost surely not generated by

such a model. Gelman and Shalizi (2013, p. 20) say ‘The goal of model checking, then, is

not to demonstrate the foregone conclusion of falsity as such, but rather to learn how, in
particular, this model fails’. My argument above is completely consistent with this

perspective. The argument, bolstered with examples, said merely that the ad hoc

construction of a measure T such that pðTrep � TactÞ is an exercise in a foregone

conclusion. Moreover, the implications are ambiguous because the measure T does not

entail a specific structural form for an expanded model. Instead of going through the

foregone conclusion and ambiguous implication of Bayesian p values, we should instead

define an expanded model and evaluate it with Bayesian estimation.

I have also suggested that a qualitative posterior predictive check may be Bayesian,
insofar as perception and cognition themselves may be Bayesian. There is no inherent

necessity for model checking to be non-Bayesian. Formal Bayesian calculations are

conditional on a particular model space, but there are a variety of ways to provoke the

analyst to consider other model spaces. The provocation can come from a posterior

predictive check, or the provocation can come from learning about other types of models

in other applications and wondering whether there is an analogous application, or the

provocation can come from simply wanting to prove a competing theorist wrong. But

whatever theprovocation, the space of possible alternatives is still governed by themental
prior in the analyst’s mind.
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