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 Evolution   of attention   in learning     

    J O H N K .    K R U S C H K E     A N D     R I C H A R D A.    H U L L I N G E R    

   Abstract 

 A variety of phenomena in associative learning   suggest that people and 

some animals are able to learn how to allocate attention   across cues. 

Models of attentional learning   are motivated by the need to account 

for these phenomena. We start with a different, more general motiv-

ation for learners, namely, the need to learn quickly. Using simulated 

  evolution, with adaptive fi tness measured as overall accuracy during a 

lifetime of learning  , we show that   evolution converges to architectures 

that incorporate attentional learning  . We describe the specifi c train-

ing environments that encourage this evolutionary trajectory and we 

describe how we assess attentional learning   in the evolved learners. 

   Evolution   of attention   in learning  Birds do it, bees do it; maybe ordin-

ary fl eas do it? They all learn from experience. But why is learning   so ubiqui-

tous? Why not just be born already knowing how to behave? That would save a 

lot of time and a lot of   error. Presumably, we are born ignorant either because 

evolution   is unfi nished or because what we need to know is too complex to 

be fully coded in the genome. Either way, it seems that evolution   has cleverly 

found a mechanism for dealing with the birth of ignorance; a mechanism that 

we call learning.   

 Of course, it may be that   learning is merely something that organisms do for 

fun in their spare time. Perhaps there is not much adaptive value in learning  , 

and little cost, and therefore no selective pressure on the mechanisms of learn-

ing  . To the contrary, there is good evidence that learning   is metabolically costly 

(Mery & Kawecki,  2003 ) and, therefore, it is probably achieving something of 

reproductive value (Johnston,  1982 ). 
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Evolution of attention in learning 11

 Importantly, what matters is not merely the ability to learn slowly and even-

tually. What matters is learning   fast. As just one recent example of this fact, 

Raine and Chittka ( 2008 ) showed that different hives of honeybees learned 

about sources of food at different rates, and those hives that learned faster got 

signifi cantly more food. 

   Fast learning   favors selective attention   

 Given that faster learning   is better learning  , how should learning   be 

speeded up? What sorts of learning   mechanisms may have evolved which make 

learning   faster? In this chapter we argue that “selective attention   in   learning” 

is a natural consequence of evolutionary pressure to learn quickly in certain 

environments. We show through simulations that merely by giving a repro-

ductive advantage to organisms that learn faster, an attentional mechanism 

evolves. Attentional processes yield faster learning   in particular environments, 

and much of our chapter is devoted to describing a range of environments that 

encourage the evolution   of attention   in learning.   

 This perspective on attention   in learning  , that is, that selective attention   

is adaptive and benefi cial for learning  , contrasts with the intuitive view that 

selective attention   is merely an unfortunate side effect of limited-capacity pro-

cessing. If attention   were merely the consequence of capacity limitations then 

selective attention   should go away when capacity increases. We show the oppos-

ite: even when there is no metabolic penalty for high learning   rates, speed of 

learning   favors selective attention.   

 The second main purpose of the chapter is to remind readers that some 

apparent infelicities in learning   are, in fact, a natural consequence of hav-

ing evolved to learn fast. In particular, the “highlighting   effect,” which will 

be described in detail later in the chapter, seems irrational from a normative 

statistical perspective, but is a natural consequence of a mechanism for learn-

ing   quickly, namely attention   shifting and learning   (for a review see Kruschke, 

 2010 ). The highlighting effect   should not be construed as an erro  r in an other-

wise rational learner. Instead, highlighting should be understood as a signature 

of a learner who is well adapted to learning   fast in particular environments. 

The benefi ts of fast learning   outweigh the costs of “irrational” generalization, 

which might never actually be tested in the real world. 

 The highlighting effect   has been explained by a theory of attentional shift-

ing and learning   (Kruschke,  1996a ,  2001 ,  2003 ,  2010 ). The idea is that when 

a cue–outcome event occurs that contradicts previously learned expectations, 

attention   shifts away from cues that cause error  , toward other cues. The re-

allocation of attention   becomes a learned response   to those cues. Various 
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John K. Kruschke and Richard A. Hullinger12

data converge on that explanation  , including eye tracking data (Kruschke, 

Kappenman, & Hetrick,  2005 ). No other theory has yet been able to account for 

the highlighting effect   in as much detail. Therefore, we use the highlighting 

effect   as a strong signature of attentional shifting during learning  . One of the 

main fi ndings of this chapter is that learners who have evolved to learn fast (in 

certain environments) also exhibit highlighting as a side effect. 

 The chapter is organized as follows. First, we describe the particular type of 

training environment in which the simulated learners will evolve. Essentially, 

the environment implements context-dependent cue relevances,   with contexts   

changing through time. Then we describe a class of learning   agents that will be 

explored. We use variants of backpropagation networks   (Rumelhart, Hinton, 

& Williams,  1986 ) as a representative class of associative learning   models. We 

then show results from “intelligent design,” by which we humorously refer to 

the process whereby we establish intuitively reasonable architectures (instead 

of randomly searching for architectures) and use hill-climbing optimization to 

fi nd optimal learning rates  . In all cases, the learning   rates that learn the train-

ing environments fastest also show robust highlighting. Next, we report results 

from genetic algorithms   that searched the space of architectures and learn-

ing   rates simultaneously. Again, the best learners show highlighting. We con-

clude with a discussion of other training environments conducive to learned 

attention  . 

   Fast learning    of what  favors selective attention    to what?  

 We have made the skeletal claim in the introduction that fast learning   

favors selective attention  . To fl esh out the claim, we need to defi ne what envir-

onmental situations are being learned and what aspects are attended to. 

     Attention   to what? The representation 

 If the need for speed is paramount in learning  , then why not just 

evolve a high-capacity memorizer? This would be analogous to a high-speed, 

high- resolution video camera that has yottabytes  1   of memory, recording every 

moment instantly. It seems that this might be the optimal learner, subject only 

to costs of hardware. To the contrary, such a system is far from optimal, even 

if the hardware is free. The problem comes in using the stored information. 

To use the memory for anticipating outcomes in new situations, either the 

new situation must retrieve an  exact match  in the vast memory to determine 

the exact outcome that occurred before, or the new situation must retrieve 

many  similar  memories and the system must somehow integrate across those 

  1     A yottabyte is 10 24  bytes, i.e., one trillion terabytes.  
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Evolution of attention in learning 13

memories to anticipate a likely outcome. In the real world there is never an 

 exact  repetition of a situation. For example, recognizing a person from day to 

day demands imperfect matching to memory of the person from previous days, 

because the person’s appearance and behavior are never exactly the same from 

day to day. Therefore, memory retrieval   that is based on exact matching would 

be useless in practice, even if the hardware were available in principle. 

 Instead of exact matches to memory, retrieval   must be based on some form 

of similarity between stimulus   and memories. Similarity can be defi ned many 

different ways, and only in the context   of specifi c representational formats. In 

any case, the point is that the mind has some representational format that is 

not a mere copy of the sensory surface. The representation is a transformation 

of the sensory information into a format that has various useful components. 

 It is the components of the representation that can be selectively attended. 

By this we mean that the representational components can be selectively 

enhanced or suppressed. We will not be modeling the entire process of trans-

forming a sensory surface into internal representations of perception  , cogni-

tion, and action. Instead, our model starts with an input representation that 

already assumes considerable transformation from sensory input to percept. 

Specifi cally, we will assume that the learner’s world consists of the presence 

or absence of various features, such as tones, lights, colors, etc. This sort of 

input representation is assumed by many venerable models of associative 

learning  . 

 What makes this sort of feature-based representation so intuitive and effort-

less is that the features can be easily selectively attended by us. For example, 

we can talk about the presence/absence of a tone, or the presence/absence of 

a light, because they can be selectively attended. Aspects of the world that are 

diffi cult to selectively attend, such as brightness versus saturation of colors, 

are used less often in associative learning   experiments. The selectively attend-

able features need not be conceptually simplistic, such as pure tones or lights. 

Instead, the features could be complex entities, such as the presence/absence 

of the word “radio,” or the presence/absence of a picture of a fi sh. We assume 

that the learner has already acquired some internal representation of certain 

features, however simple or complex. Our models, to be described below, allow 

forms of selective attention   to those features. 

      Learning   of what? The environment 

 What is it that must be learned that we claim can be speeded by select-

ive attention  ? We believe that a fundamental challenge faced by an organism 

is “context-dependent relevances   of cues.” The challenges posed by contextual 

dependencies have been recognized by machine learning   researchers for dec-

ades (for a review see, e.g., Edmonds & Norling,  2007 ). Individual learners, such 
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as humans, may be born into environments with cue relevances that change 

depending on the context  . The context  -specifi c relevances must be learned, and 

learned quickly for reproductive advantage. 

     Defi nition of context   

 The term “context  ” is used by different authors in different ways. In 

general, contextual cues may differ from non-contextual cues in their spatial or 

temporal arrangement, or in their contingent relationship with the outcomes. 

Contextual cues are sometimes thought of as spatially ambient rather than 

focal. For example, context   may be the color of the background of a visual 

display (e.g., Dibbets, Maes, Boermans, & Vossen,  2001 ), or context   may be the 

spatial constellation of items in an array (e.g., Chun,  2000 ). Contextual cues 

are sometimes supposed to be relatively static through time compared to focal 

cues. For example, the context   may be the restaurant in which a sequence 

of different foods (the focal cues) is observed (e.g., Rosas & Callejas-Aguilera, 

 2006 ). Contextual cues are also often intended to be uncorrelated with the out-

come, such that contextual information by itself is uninformative regarding 

what specifi c outcome to anticipate (e.g., Little & Lewandowsky,  2009 ; Yang & 

Lewandowsky,  2003 ). For our purposes, we defi ne   context as a cue that is not 

correlated with the outcome and that changes in time less frequently than other 

cues. In other words, we emphasize the temporal and contingency   aspects of 

context  , not its spatial aspect. 

      An environment with context-dependent relevance   

  Table 1.1  shows the standard training environment that we will use to 

instantiate context-dependent relevance  . Cues arbitrarily denoted by labels “I” 

and “J” act as context   cues. These context   cues have zero correlation with the 

outcomes, but they do indicate which other cues are good predictors of the out-

comes. When context   cue I is present, focal cues A and B are perfect predictors 

of the outcomes, but focal cues C and D are uncorrelated with the outcomes. 

On the other hand, when context   cue J is present, the roles of the focal cues are 

reversed, with cues C and D now being the perfect predictors of the outcomes, 

and cues A and B being uncorrelated with the outcomes.    

 During training, we will usually group together several consecutive trials 

that share the same context   cue. Thus, several trials with context   cue I will 

occur, followed by several trials with context   cue J, and so forth. In this way, the 

context   cues change less frequently than the other cues. The exact number of 

trials in one context   or another will be manipulated in different simulations. 

 Neither the context   nor focal cues have any spatial coding in the model. 

There is no distinction between context   and focal cues other than their contin-

gencies with other cues and the outcomes. The columns of  Table 1.1  are labeled 
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Evolution of attention in learning 15

separately (as context   and focal cues) merely for the benefi t of the reader; the 

simulations had no such benefi t. 

 There is redundancy built into the structure of  Table 1.1 , with cue B being 

redundant with cue A, and cue D being redundant with cue C, and outcome Y 

being redundant with cue X. These redundancies are unnecessary for the basic 

demonstrations we report below, but the redundancies do provide a symmetry 

that makes interpretation of the simulations easier. 

 The structure of  Table 1.1  is also isomorphic to the structure denoted “Type 

III” in the monograph by Shepard, Hovland, and Jenkins ( 1961 ), which reported 

benchmark results regarding the relative diffi culties of six different category 

structures. Unlike their work, our demonstrations do not assume that cues I–J, 

A–B, and C–D are alternative values of three distinct dimensions. Despite the 

fact that the cues in  Table 1.1  are not dimensionalized, it may benefi t under-

standing to display them as if they were, as shown in  Figure 1.1 . The items for 

which context   cue I is present are shown on the left side of the fi gure, and 

the items for which context   cue J is present are shown on the right side of the 

fi gure. The correct outcome is denoted by X and Y, along with grey shading in 

order to enhance the visual distinctiveness of outcome X. It can be seen that in 

context   I, cues A and B are relevant to the outcome, but in context   J, cues C and 

D are relevant to the outcome.    

     Designing fast learners 

 Our goal is to create fast learners of contextually dependent relevan-

cies. We will use the structure of  Table 1.1  as the test bed. The simulated 

 Table 1.1     A training environment that has context-dependent relevancies 

Context Focal Cues Outcomes

I J A B C D X Y

1 0 1 0 1 0 1 0

1 0 1 0 0 1 1 0

1 0 0 1 1 0 0 1

1 0 0 1 0 1 0 1

0 1 1 0 1 0 1 0

0 1 1 0 0 1 0 1

0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1

   Note : Presence of a cue or outcome is denoted by a 1, and absence is denoted 

by a 0. Each row denotes a different training trial.  
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learners will be trained on several repeated blocks of the structure and the 

total accuracy during training will be used as a measure of reproductive fi t-

ness. We will explore various model architectures and temporal groupings 

of context   trials. For each design, we will fi nd learning   rates that minimize 

the total error   (i.e., maximize the total accuracy) during the lifetime of the 

learner. 

     Assessing selective attention  : exhibiting highlighting 

 Having thereby designed optimal fast learners, we will then assess 

whether the learner has selective attention  . There are many criteria one might 

establish for declaring that a learner possesses selective attention  . The criterion 

we will use is that the learner exhibits “highlighting.” 

 In the highlighting procedure (Kruschke,  2010 ), training begins with the 

presentation of two cues, denoted I and PE, leading to the outcome E. (Cue I 

here bears no relation to context   I in the other structure; the shared label is 

accidental coincidence.) We denote such trials as I.PE→E. After this early train-

ing, occasional trials introduce a new case: I.PL→L. In later training, those cases 

predominate, so that the overall number of I.PE→E trials equals the overall 

number of I.PL→L trials. The outcomes are denoted E and L because they are 

“early trained” and “late trained,” respectively. The cue PE is so labeled because 

it is a “perfect” predictor of the “early” outcome, and the cue PL is so labeled 

A

B

D

C

Y

Y

X

X

I

J

A

B

D

C

Y

X

Y

X

 Figure 1.1      Spatial representation of the training structure in  Table 1.1 . Each 

circle represents a combination of cues A, B, C, D, I, and J. The letter in the circle, 

either X or Y, represents the correct outcome for that cue combination. The square 

on the left has a letter I in its center to indicate that cue I is present, while the 

square on the right has a letter J in its center to indicate that cue J is present. The 

upper circles have cue D present, while the lower circles have cue C present. The 

remaining dimension marks whether cue A or cue B is present. Although this 

diagram represents A–B, C–D, and I–J as if on dimensions, the basic structure does 

 not  encode or assume any dimensional relationship among the cues.  
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because it is a “perfect” predictor of the “late” outcome. The cue I is an “imper-

fect” predictor of the two outcomes. 

 Notice that the two outcomes have symmetric structure. Each outcome has 

one perfect predictor, and the outcomes share an imperfect predictor. Moreover, 

there are an equal number of trials of the two cases, overall. If people learn 

this simple symmetry, then the imperfect predictor should be equally (un-)

associated with the two outcomes, and the two perfect predictors should be 

equally associated with their respective outcomes. This symmetry is easy to 

assess, as follows. After training, we test people with cue I by itself, asking 

people to respond with the outcome they think is most likely based on what 

they have learned. It turns out that people do not give 50/50 responding, but 

instead clearly prefer the early learned outcome E (roughly 70/30). This prefer-

ence is not a mere primacy bias for any ambiguous test, however. When tested 

with the pair of cues PE.PL, people clearly prefer the later learned outcome L 

(roughly 65/35). 

 The “torsion” in preferences, wherein one ambiguous cue leads to a prefer-

ence for E but another ambiguous cue leads to a preference for L, is called the 

highlighting   effect. The highlighting effect   has been found for many different 

stimuli, relative frequencies, cover stories, and so on. For a review, with data 

from a “canonical” experiment that has equal base rates for the various cases, 

see Kruschke ( 2010 ). 

 The highlighting effect   is challenging to explain. Because of the simple sym-

metry in the structure, many formal models of learning   predict symmetric 

response   preferences. The Rescorla–Wagner ( 1972 ) model  , for example, pre-

dicts symmetric associations   (with suffi cient training). 

 The most successful account of highlighting so far is an attentional account, 

suggested informally by Medin and Edelson ( 1988 ) and formalized by Kruschke 

( 1996a ,  2001 ). When people are learning   the early cases I.PE→E, attention   is 

allocated to both cues, because there is no reason not to do so. Consequently, 

moderate-strength associations   are learned from both cues to outcome E. The 

associative strengths are only moderate because the two cues mutually support 

each other in generating the anticipation of the outcome. When subsequently 

learning   cases of I.PL→L, however, attention   rapidly shifts away from cue I, 

because it has already been learned to indicate something other than the cor-

rect outcome L. Attention   therefore falls on the distinctive cue PL, and a strong 

association   is learned from PL to outcome L. Thus, in learning   I.PL→L, people 

have learned two things: fi rst, they have learned to re-allocate attention   away 

from I to PL. Second, they have learned to associate PL with L. 

 Because the attentional account of highlighting has been rather successful 

in quantitatively accounting for many variations of the highlighting design and 
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other cue–outcome mappings (again, for a review, see Kruschke,  2010 ), we will 

treat the highlighting effect   as a  behavioral  signature of attentional learning  . 

     Other signatures of attentional learning  ? 

 There are other learning   phenomena that have been explained in terms 

of attention  , but we do not explore them in the present chapter for two differ-

ent reasons. First, some of these other phenomena can be explained without 

appeal to attentional mechanisms. Second, some of these other phenomena 

require the ability to learn complex, non-linear relationships between cues and 

outcomes that the simple models we explore in this chapter cannot learn. 

 Consider the phenomenon known as “blocking  ,” wherein an initial training 

stage involves trials of A→X, and a subsequent training stage involves trials 

with a redundant relevant cue, A.B→X (Kamin,  1969 ). In subsequent tests, the 

association   from B to X appears to be weaker than it would have been if the 

initial phase with A alone had not been experienced. This relative weakness of 

B has been explained in attentional terms, such that there has been learned 

suppression of cue B (e.g., Kruschke,  2001 ; Kruschke & Blair,  2000 ; Kruschke  et 

al .,  2005 ; Mackintosh,  1975 ). But the basic blocking   effect can also be explained 

without appeal to attentional learning   (e.g., Rescorla & Wagner,  1972 ; Miller & 

Matzel,  1988 ). Therefore, we have chosen not to use blocking  , per se, as a signa-

ture of attentional learning  . 

 Another phenomenon that has been explained in terms of attention   is “latent 

inhibition  ” (Lubow,  1989 ; Schmajuk,  2002 ). In the basic procedure for latent 

inhibition  , a cue is fi rst presented with no notable outcome, in a set of trials 

called the preexposure phase. Subsequently, the cue is paired with a novel out-

come. Latent inhibition   occurs when learning   of the novel cue–outcome associ-

ation   is retarded because of the preexposure phase. One explanation   is that the 

preexposure phase produced learned attentional suppression of the cue, which 

lingered into the subsequent phase in which the cue was paired with an out-

come (e.g., Kruschke,  2001 ; Schmajuk, Lam, & Gray,  1996 ). The phenomenon 

can be diffi cult to obtain in humans, however (but see Nelson & Sanjuan,  2006 , 

for a recent example), and there are a variety of fi ndings suggestive of different 

underlying mechanisms in latent inhibition  . Therefore we have chosen not to 

use latent inhibition   as a signature of attentional learning  . 

 Another classic phenomenon that has been attributed to attentional learn-

ing   is the advantage of “intradimensional shifts  ” relative to “extradimensional 

shifts  ” (e.g., Hall & Channell,  1985 ; Kruschke,  1996b ; Slamecka,  1968 ). In these 

relevance-shift procedures, a learner is fi rst trained on two-dimensional stimuli 

for which one dimension is perfectly predictive of the outcome and the other 

dimension is irrelevant to the outcome. For example, it could be that red circles 
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or squares are mapped to outcome X, while green circles or squares are mapped 

to outcome Y. In this case, color is relevant while shape is irrelevant. In the 

shift phase, novel values of the dimensions are used; e.g., blue or yellow stars 

or triangles. When the same dimension is relevant in the shift phase, the shift 

is called an intradimensional shift  . When the other dimension is relevant in 

the shift phase, the shift is called an extradimensional shift  . Many experiments 

have demonstrated that for adult humans, intradimensional shift   is easier to 

learn than extradimensional shift  . This advantage for intradimensional shifts   

is naturally explained by attentional learning  : in the initial phase, people have 

learned to attend to the relevant dimension and to ignore the irrelevant dimen-

sion. This attentional allocation persists into the shift phase. Whereas this is a 

strong indicator of attentional learning  , a model of it requires representation 

of dimensions and values within dimensions; e.g., representation of red and 

green along with the dimension of color. In our modeling efforts, we opted 

to use a simpler representation that avoided assumptions about dimensions, 

and therefore this phenomenon of intradimensional shift   advantage is beyond 

the scope of our present explorations (but see Kruschke,  1996b , for a related 

model). 

 Finally, in theories of category learning  , attentional learning   is used to 

explain the differential diffi culties of various category structures. In particular, 

the relative ease of two structures introduced by Shepard  et al . ( 1961 ) is natur-

ally interpreted in terms of attentional learning  . These structures involve three 

binary-valued dimensions, with the resulting eight instances mapped into two 

categories. One structure involves a non-linearly separable exclusive-OR on 

two dimensions, with the third dimension being irrelevant (called “Type II” by 

Shepard  et al .,  1961 ). The other structure is linearly separable, defi ned by two 

diametrically opposed prototypes whereby all three dimensions are relevant 

to distinguish the categories (called “Type IV” by Shepard  et al .,  1961 ). Despite 

the fact that the latter structure is linearly separable and the former structure 

is not, the latter category is harder to learn. Some theories assert that the lat-

ter structure is harder because it demands attention   to all three dimensions, 

whereas the former category only demands attention   to two dimensions (e.g., 

Kruschke,  1992 ; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,  1994 ; Shepard 

 et al .,  1961 ). Other theories use more rule-like representations to account for 

the relative diffi culties (e.g., Goodman, Tenenbaum, Feldman, & Griffi ths, 

 2008 ; Nosofsky, Palmeri, & McKinley,  1994 ), which might be re-construed in 

attention  -like terms. Even among explicitly attentional approaches, modeling 

these structures appropriately requires representation of dimensions, and, as 

mentioned above, we have opted to use simpler representations in the current 

explorations. 
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 Thus, of the many phenomena that may be considered as indicators of atten-

tional learning  , it is the highlighting phenomenon that is both structurally 

simple and uniquely explained (so far) by attentional learning  . Therefore, we 

use highlighting as the behavioral signature of attentional learning  . 

       Design space and functional desiderata 

 Given a design space consisting of backpropagation networks  , we want 

to explore variations that may implement functional desiderata. One desider-

atum is that previous learning   should be protected, as appropriate, when learn-

ing   new associations  . For example, there should not be catastrophic forgetting 

of the fact that 2 x 2 → 4 when subsequently learning   the fact that 3 x 3 → 9 

(McCloskey & Cohen,  1989 ). One way to help protect previous learning  , when a 

new combination of cues is encountered, is by shifting the internal representa-

tion of the cues away from the confl icting, previously associated cues. In other 

words, if previous learning   has associated a particular cue with a particular out-

come, and new outcomes also include that previous cue among the presented 

cues, then the previous association   from that cue can be protected by shifting 

attention   away from it when learning   the new outcome. Such a shift in internal 

representation can have an undesirable side effect, however, because the shift 

might generate arbitrary patterns of activation that correspond to nothing pre-

sent in the cues. Loosely speaking, if you close your eyes to defl ect your atten-

tion   away from a previously learned cue, then you might imagine anything; an 

unconstrained shift of representation might cause “hallucinations.” Therefore, 

a second functional desideratum is for the shift of representation to be con-

strained by the actually present cues. 

 These functional desiderata can be implemented in many ways. We consid-

ered the following possibilities. One way to keep the hidden-layer represen-

tation faithful to the actually presented cues is to establish hidden nodes 

that have fi xed 1-to-1 connections from corresponding input cues. These 

1-to-1 connections cause the corresponding hidden-node activations to start 

the training as approximate copies of the input-cue activations. This initial 

state can be eventually overruled by learned connections from other input 

cues, but at least there is an initial bias toward faithfulness to present cues. A 

second way to keep the hidden layer from hallucinating is to allow learning   

only for hidden nodes for which the corresponding input cue is activated. 

This method can be easily implemented by multiplying the hidden-node acti-

vation by the corresponding cue-node activation. The multiplicative product 

is large only if both the cue-node activation and the hidden-node activation 

are large. 

9780521113649c01_p10-52.indd   209780521113649c01_p10-52.indd   20 5/28/2010   2:38:24 PM5/28/2010   2:38:24 PM



Evolution of attention in learning 21

 The second desideratum, that is, protection of previous learning   by a shift 

of hidden representation, can be achieved in different ways. One way is to do 

gradient descent on error   with respect to the hidden weights fi rst, before chan-

ging the output weights. In this way, the previously learned output weights 

are protected, if possible. After the hidden weights are shifted, then input 

is re-propagated to the hidden nodes and the output weights are learned. A 

second way to implement a shift is to have two sets of weights: one set is the 

regular type, the other set is “fi rst and fast”: fi rst-updating but with fast decay 

to zero before the next trial begins (a related scheme for fast-decaying weights 

was proposed by Hinton & Plaut,  1987 ). Again, the fi rst-fast weights protect the 

output weights from catastrophic forgetting, but in this case the slow hidden 

weights do not need to change radically to implement the protection. 

  Figure 1.2  illustrates all these design possibilities in a single network archi-

tecture. Not all of the options need to be implemented simultaneously. The 

diagram indicates that the hidden nodes and outcome nodes are standard 

backpropagation nodes that fi rst sum their weighted inputs and then squash 

the sum with a sigmoid function. Formally, denote the activation of the  i   th   

input node as in
ia , the activation of the  j   th   output node as out

ja , and the weight 

connecting node  i  to node  j  by  w   ji  . Then the sigmoidal activation function is 

given by

 
1 1

out inexpj ji i j
i

a w a θ
   

= + − −   
    

∑
 

(1.1)

 

where  θ   j   is the “threshold” of the  j   th   node. A graph of the sigmoidal output, as a 

function of the summed inputs, is a tipped “S” shape, as shown schematically 

inside the nodes of  Figure 1.2 . The sigmoid activation asymptotes at 1.0 as the 

summed input exceeds the threshold by a large positive amount, and the sig-

moid activation asymptotes at 0.0 as the summed input is far below the threshold. 

When the summed input equals the threshold then the sigmoid activation is 0.5.    

 The dashed arrows in  Figure 1.2  indicate learnable weights, all of which 

are initialized at zero. The solid arrows impinging upon the hidden nodes are 

fi xed, non-learnable 1-to-1 connections that implement the idea that each hid-

den node starts as an approximate copy of the corresponding input cue. For 

purposes of demonstration in the simulations, the 1-to-1 connection weights 

were arbitrarily fi xed at 10.0, with thresholds in the sigmoid function also set 

at 10.0. Consequently, in the naive network with all zero weights except the 

1-to-1 connections, when an input cue is active, the corresponding hidden node 

has activation of 0.5, and when the input cue is not active, the corresponding 

hidden node has activation of nearly zero. 
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  Figure 1.2  also shows a solid arrow from the input cues passing  beside  the 

hidden linear-sigmoid node, via a circle marked with a multiplication sign. 

These arrows indicate optional multiplication of the hidden-node activation by 

the corresponding input-cue activation. 

 Finally, the dashed arrows in  Figure 1.2 , which indicate learnable connec-

tions, each represent two different learnable connections. Both connections 

learn via the standard backpropagation algorithm but they can have differ-

ent learning rates  . Crucially, one connection is the traditional “slow” learner, 

whereas the other connection is a “fi rst-fast” learner. The fi rst-fast connection 

adjusts its weights before the slow connection, i.e., it learns  fi rst , and then acti-

vation is repropagated and error   is recomputed before the slow connection is 

adjusted. Moreover, the fi rst-fast weight decays to zero before the next trial 

starts, i.e., it is  fast  decaying, whereas the slow weight does not decay. 

 In summary, there are four learning   rates in the architecture of  Figure 1.2 : the 

hidden, aka attention  , nodes have incoming weights that have a slow learning   

rate and a fi rst-fast learning   rate. The outcome nodes also have slow and fi rst-

fast learning   rates that can be different from the attention  -node learning   rates. 

If any of the learning   rates is zero it is tantamount to that sort of learning   being 

unavailable to the network. There is also an optional multiplicative “gating” of 

the input activation by the corresponding hidden activation. 

      Results: optimal learners exhibit highlighting 

 For each architectural option we used hill-climbing optimization to dis-

cover the learning   rates that minimized the total error   during training on the 

context-dependent-relevance   structure in  Table 1.1 . It might seem that higher 

Outcome:

Attention:

Cues:

 Figure 1.2      An architecture for exploring learning rates that minimize error.  
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learning   rates would always produce faster learning   and smaller total error  , 

but this is not the case. The reason is that learning   rates that are too high cause 

the weights to overshoot the best values, thereby producing larger error   on 

subsequent training trials. Thus, even though we allow the learning   rates to be 

arbitrarily large as needed, the best learning   rates turn out to be moderate in 

magnitude. 

 The main question is whether a network that has optimal learning rates   

also embodies selective attention  . Selective attention   is assayed behaviorally by 

exhibition of highlighting. For each architectural option, we found the optimal 

learning rates  , then trained a naive network on the highlighting structure and 

tested whether the network exhibited highlighting. 

 In detail, the simulations proceeded as follows. In training the context-

dependent-relevance   structure, blocks of four consecutive trials, used the 

same contextual cue (I or J). At the beginning of each block of four trials, 

there was a 50/50 chance of being trained in context   I or context   J. Each 

simulated network was trained on 20 random blocks, constituting 80 trials. 

For each simulated network, the total error   across training was recorded. 

Fifty different random training sequences were averaged to compute the 

error   for a given learning   rate. Formally, denote the correct, “teacher,” value 

at outcome node  k  on trial  t  in sequence  s  as  T   stk  , with  T   stk    =  1 if  k  is the correct 

outcome for the present cues, and  T   stk    =  0 otherwise. Then the overall error   

was measured as

 
( )

1 2
50 80 2

21

50 80 2

/

out

seq trial out

RMSD stk stk
s t k

T a
 

= − × × 
∑ ∑ ∑

 

(1.2)

 

where the summation  s are over sequences, trials, and outcome nodes, respect-

ively, and where out
stka  is computed by the sigmoid activation function in  Equation 

1.1 . The overall error   in  Equation 1.2  is also called the root-mean-squared devi-

ation (RMSD) between the taught and generated values. As a reference for the 

magnitude of the RMSD, consider its value if the network learned nothing, so 

that the network’s outcome activations were always exactly 0.5 (which is what 

the sigmoid activation function generates when all the weights are zero). In 

this case, because  T  is always zero or one, T stk  – out
stka  is always ±0.5. Hence the 

RMSD is 0.5 when there is no learning   at all. The RMSD gets smaller than 0.5 

when there is successful learning  . 

 A hill-climbing optimization routine was used to fi nd learning   rates that 

produced the smallest possible error  . The optimizer started with reasonable 

learning   rates specifi ed by the programmer and then incremented or decre-

mented the various learning   rates until adjustments no longer yielded any sig-

nifi cant reduction in RMSD. (The arbitrary starting point for the learning   rates 
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was manually set at several different values for different runs, to gain confi -

dence that a global minimum was achieved.) The hill-climbing optimizer found 

learning   rates that minimized the RMSD. 

 Having converged to the optimal learning rates  , the network was then reset 

to all-zero weights and tested on the highlighting structure. It began with 

8  trials of I.PE→E, then a random mix of 12 trials of I.PE→E with 4 trials of 

I.PL→L, followed by a random mix of 8 trials of I.PE→E with 24 trials of I.PL→L. 

Notice that there were an equal number of I.PE→E and I.PL→L trials overall. 

After the training the network was tested with I.PE, I.PL, I alone, and PE.PL. 

 Different architectural options were used, with optimal learning rates   deter-

mined for each.  Figures 1.3  and  1.4  show the results when only slow weight 

learning   was permitted, with no multiplicative gating. In other words, the fi rst-

fast learning   rates were fi xed at zero, while the slow learning   rates on both  layers 

of nodes were allowed to be whatever values minimized the RMSD.  Figure 1.3  

shows the learned weights at the end of training for one representative network. 

The weights are displayed in matrix format, with the weight values indicated 

numerically and by the shading in the cells. The left matrix shows the weights 

to the hidden (attention  ) nodes from the cue nodes. Notice that the diagonal 

cells of the left matrix are all 10, refl ecting the fact that the 1-to-1 connections 

are set permanently to 10 in these simulations. Of special interest is the lowest 

row of this matrix, which represents the weights from context   cue I. The con-

nections from context   cue I to the hidden nodes corresponding to cues A and 

B have become  positive , but the connections from context   cue I to the hidden 

nodes corresponding to cues C and D have become  negative . The weights from 

context   cue J, in the next row up, show the opposite pattern. These weights sug-

gest that the network has learned to pay attention   to A and B when context   I is 

present, but to pay attention   to C and D when context   J is present.       

  Figure 1.4  shows the result of subsequent testing of the network with the 

highlighting procedure. The same learning   rates were used, but starting with 

a naive network. The fi gure shows the weights at the end of training on a typ-

ical run. It can be seen that the weight from PL to hidden-I is strongly negative, 

but the weight from PE to hidden-I is fairly positive. In other words, the net-

work has learned to suppress attention   to I when PL is present, but to attend 

to I when PE is present. The learned weights result in a strong highlighting 

effect  : when presented with cue I by itself, the network produces a strong out-

come preference for E, but when presented with cues PE.PL, the network pro-

duces a clear outcome preference for L. In summary, when the slow-weight 

learning   rates are optimized so that the context-dependent-relevance   structure 

is learned with least error  , then the network exhibits robust highlighting. 

 We also found optimal learning rates   when the architecture included fi rst-fast 

learning   on the input-to-hidden connections, and multiplication by the input 
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 Figure 1.3      Simulation results when there is only slow weight learning on hidden 

and outcome layers, with no fi rst-fast learning and no attentional multiplication, 

as suggested by the network diagram in the upper part of the fi gure. The network 

diagram shows only three cues, whereas the simulations involved six. The lower 

panel shows the weights at the end of training in a typical run on the context-

dependent structure ( Table 1.1 ). In the left matrix, the rows index the input cue, 

in the order I, J, A, B, C, and D, as indicated along the left edge of the matrix. The 

columns index the hidden node, in the same order, as indicated at the bottom 

edge of the matrix. Notice that the weights from input node I (lowest row) are 

positive (2.86 and 2.44) to hidden nodes A and B, but negative (−3.74 and −3.08) to 

hidden nodes C and D. The weights from input node J show the opposite pattern. 

These weights indicate that the network has learned to pay attention to A and B in 

context I, but to pay attention to C and D in context J. The RMSD across 80 training 

trials and 50 simulated subjects was 0.250.  
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cues. The pattern of results for the optimal learning rates   was the same, but the 

RMSD decreased to 0.233, and the magnitude of highlighting increased. 

 These simulations establish examples of what we mean by learned atten-

tion  : individual cue activations are amplifi ed or attenuated depending on which 

other cues are present. The networks have learned to selectively enhance or 

suppress particular cues, in a context  -dependent manner. It is this sort of con-

text  -dependent, learned modulation that we call “selective attention  ” when 

analyzed at the level of hidden network activations. At the behavioral level, 

attention   can only be assayed by overt outcome-activation patterns without 

reference to hidden internal activations. We use the highlighting effect   as a 

behavioral-level signature of selective attention  . 

 In the fi nal discussion we shall return to these explorations in the design 

of network architectures but with other training environments. Before those 

explorations, we will describe the more thorough search of design space that is 

possible via genetic algorithms  . 

    Evolution  : genetic algorithms   discover fast learners 

 Human designers cannot manually explore the myriad (indeed infi nite) 

combinations in the design space. It could well be that there are unforeseen 
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 Figure 1.4      Results from test of highlighting, using the same architecture and 

parameter values as in  Figure 1.3 . These weights result in a strong preference for 

outcome E when tested with cue I, and a strong preference for outcome L when 

tested with cues PE.PL. Notice in the left matrix that there is a strong inhibitory 

weight (−2.95) from cue PL to hidden node I, indicating that the network has 

learned to suppress cue I when cue PL is present. The right matrix shows that 

the weights from hidden node I to the outcomes are not symmetric; they excite 

outcome E (+1.3) but inhibit outcome L (−1.3).  
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combinations of design options that learn even better than those discovered 

by hill climbing on learning   rates in a pre-set architecture. In this section we 

report the results of extensive searches of the design space by simulated evo-

lution  , i.e., genetic algorithms   (e.g., Goldberg,  1989 ). An advantage of a genetic 

algorithm   (GA) is that it can explore a wide range of architectural combinations 

and learning   rates simultaneously, unlike the hill-climbing searches that were 

restricted to a particular architecture. To simulate the evolution   of attention   

in learning   we follow the approach presented in Miller and Todd’s ( 1990 ) and 

Todd and Miller’s ( 1991 ) work on evolving networks (agents) that learn. We use 

a genetic algorithm   to evolve populations of agents in the context-dependent-

relevance   structure of  Table 1.1 , and we look for signs of attention   shifting (i.e., 

highlighting) in the best performing agents. 

     Overview 

     Agents 

 Each agent in the simulation consists of a connection matrix that 

describes each node in the network, the type of connection between each of 

the nodes (no connection, fi xed connections, slow-learning  , or fi rst-fast connec-

tions), and the initial strength of each of the connections. Additionally, each 

agent contains a structure that specifi es the learning   rates to be used for back-

propagation of error   at each layer of the network and other learning  -related 

details such as whether the agent implements multiplication of hidden activa-

tions by cue activations. 

 This genetic structure can be used to specify an infi nite space of backpropa-

gation networks with different numbers of input, hidden, and output nodes, 

different connection architectures, learning rates  , and error   propagation 

methods. In our simulations, the “genome” explicitly specifi es various weights 

and learning   rates, which might not be very biologically plausible, but never-

theless serves our purpose of thoroughly searching the space of design pos-

sibilities. More biologically plausible specifi cations may be possible, see, for 

example, the work of Burgos ( 2007 ). In order to keep the evolutionary process 

tractable and to make comparison with the hill-climbing simulations straight-

forward, the networks are constrained as follows: each network has six input 

nodes (one for each of the binary cue values I, J, A, B, C, and D), six hidden 

nodes, and a single output node. The single output node represents outcome 

X by an activation of 1, and outcome Y by an activation of 0. Its threshold is 

fi xed at zero, so the outcome node’s baseline activation is 0.5, the neutral 

value between X and Y. Each input node is constrained to have a fi xed 1-to-1 

connection weight of 10, and the hidden nodes’ thresholds for the sigmoid 

functions were fi xed at 10. 
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 Each network is trained in an environment that has a random assignment of 

abstract cues (i.e., I, J, A, B, C, and D) to physical input nodes. Because no individ-

ual agent knows which cues will play which role, the best evolved initial weights 

should be symmetric across input cues. To simplify the simulations, we enforced 

this logical symmetry rather than let it noisily evolve. This symmetry is produced 

in a three-step process when birthing a network. First, as noted above, each input 

node will have a fi xed 1-to-1 connection. Second, the connection type and initial 

weight for the connection between the fi rst input node and its adjacent hidden 

node is copied identically for each input-to-adjacent-hidden node connection. 

Third, the connection type and initial weight for the connection between the 

fi rst hidden node and the output node is replicated to each hidden-to-output 

connection.  Figure 1.5  shows a simplifi ed diagram of the possible network archi-

tectures.  Figure 1.5  is much like  Figure 1.2  except that all six cues are explicitly 

indicated, and there is only a single outcome node, as described above.    

      Environment and fi tness 

 The scenario under which our agents are evolving is a very simple con-

text   environment. The agents do not have to move, they do not have to actively 

seek out stimuli, and they do not have to interact with, or face competition   

from, other agents or any other outside factors. As with Todd and Miller’s ( 1991 ) 

Σ Σ

Σ

x x xx x xΣ Σ ΣΣ

 Figure 1.5      An architecture showing potential connections for an evolved network. 

The faint dotted lines indicate connections that may be fi xed (non-learning), slow-

learning or fi rst-fast connections. The faint multiplication nodes indicate that a 

particular agent may or may not evolve attentional multiplication. Note that for 

simplicity not all of the possible connections from the input to the hidden layer 

were included.  
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simulations, it may be helpful to think of the agents as being born in an aquatic 

world where they are attached to the sea fl oor, passively watching potentially 

edible stimuli fl oat by. Each passing stimulus   has a set of distinctive cues and 

based on those cues the agent must decide if the stimulus   is edible or inedible. 

The agent’s fi tness is increased when it makes a correct decision, to eat some-

thing that is edible or to avoid something that is not, and the agent’s fi tness 

is identically decreased when it makes an incorrect decision. After each trial, 

the agent receives feedback on the correct eat/avoid response   for the just-seen 

stimulus  , thereby allowing the agent to learn the regularities of the environ-

ment throughout its lifetime. 

 In this environment of the passive learner, temporal changes in contextual 

cues are generated by the environment. In the sea-fl oor scenario, context   cues 

might change with daylight, tides, or seasons. For example, what is good to eat 

at high tide might be poor eating at low tide. Context   could also be the pres-

ence or absence of schools of fi sh, which may occur more randomly and not at 

fi xed intervals. For example, what is poor eating when schools of jellyfi sh are 

around might be good to eat when the waters are clear. 

      Reproduction 

 Each agent sees a fi xed number of stimuli during its lifetime and its 

total fi tness level is the sum of the trial-by-trial fi tness that it has accumulated 

across all learning   trials. Agents for the next generation are selected (on the 

basis of the current agents’ fi tnesses) in one of three ways. First, the next gener-

ation can be generated using crossover and mutation. In crossover, two agents 

are selected from the current population, with the probability of selection dir-

ectly related to the relative fi tness. The genetic specifi cations of the two agents 

are spliced together and a small degree of random mutation is applied to gen-

erate an agent to be used in the next population. A second method of reproduc-

tion is by mutation only. Again, agents with higher relative fi tness have higher 

probability of being chosen as progenitors of mutated offspring, but there is no 

crossover with other agents. Finally, the third method of reproduction ensures 

that the best current solution is not wiped out by a mutation or ill-advised 

mating. The genetic specifi cation of the highest-fi tness agent in the population 

is simply copied into the next generation. Over time, this random but fi tness-

driven selection process should result in populations of networks that are very 

good at performing in a context   environment. 

       Assessing selective attention   by highlighting 

 As with the hill-climbing simulations, a highlighting task was used 

to determine whether the evolved agents were exhibiting signs of selective 
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attention  . At the end of each agent’s lifetime its learned connection weights 

were reset to 0 and it was subjected to a highlighting task, as described previ-

ously for the hill-climbing simulations. The agent’s responses   during both the 

learning   and testing phases of the highlighting task were recorded for analysis 

but played no role in the agent’s fi tness and thus the highlighting task per-

formance had no effect on the evolutionary trajectory. An agent was labeled as 

“highlighting” if the ordinality of its responses   to the ambiguous I and PE.PL 

cues showed the signature torsion in preferences described previously, i.e., if 

its output activation preferred E to L for input I and its output activation pre-

ferred L to E for input PE.PL. 

      Simulation parameters 

 For the results reported below, the GA was run with the following 

parameters: each simulated population ran for 4000 generations and each gen-

eration consisted of 100 agents. The initial population was seeded with the 

“base” agents shown in  Figure 1.6 . Each agent had fi xed 1-to-1 connections with 

a weight of 10 between each input node and its direct hidden node. Initially 

there were no other connections between the input and hidden layer. Each hid-

den node was connected to the output node with a slow learning   connection 

with an initial weight of 0 and a slow learning   rate selected from a Gaussian 

distribution centered on 0.05 with a standard deviation of 0.04. If the selected 

Σ

Σ Σ Σ ΣΣΣ

 Figure 1.6      The architecture of the initial population of agents for all evolutionary 

simulations. The input and hidden layers are connected through non-learning 

1-to-1 connections and the hidden and output layers are connected through slow-

learning connections. Multiplicative attention is not active.  
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learning   rate was negative, the absolute value of the rate was used, ensuring 

that all initial learning   rates were small positive values. It should be noted 

that this base agent behaves as a single-layer network and cannot perform per-

fectly in a non-linear discrimination   such as the context-dependent-relevance   

environment.    

 At the end of each generation the parents for the next generation were 

selected. The fi rst step of this process was to copy the most fi t agent from the 

current generation into the new generation without any crossover or mutation 

(elitist selection with  N =  1). This step ensured that the best performing agent’s 

genetic structure was not corrupted by a non-adaptive mutation or crossover. 

 After the best creature had been copied the rest of the parents were selected 

using fi tness proportionate selection. In order to provide the maximum differ-

entiation between agents even when the population was converging on similar 

solutions, the agents’ actual fi tness values were modifi ed before the selection 

process. Each agent’s fi tness was reduced by a value slightly less than the worst-

performing agent’s fi tness. This subtraction had the effect of stretching the 

fi tness values so that the worst agents had a “relative fi tness” value of near 

zero while the best agent’s relative fi tness values was equal to the difference 

in fi tness between the best and worst agents in the population. All agents were 

then subjected to roulette-wheel selection based on their relative fi tness values. 

Each agent that was selected as a parent had a 50% chance of creating offspring 

via sexual reproduction and a 50% chance of asexual reproduction. 

 Agents selected for asexual reproduction were subjected to a mutation pro-

cess where each gene (connection types, learning   rates, etc.) had a small chance 

of being mutated. The exact mutation rate was selected so that there would 

be approximately one mutation that was expressed in the symmetric agent’s 

phenotype per generation. Once a particular gene was selected for mutation, 

the new value for that gene was drawn from a Gaussian distribution centered 

on the gene’s current value and with a standard deviation proportional to 

the gene’s current value. This process ensured that small values underwent 

small changes while larger values could change more drastically in a given 

mutation. 

 Agents selected for sexual reproduction underwent a crossover process 

to generate an offspring. Once the two parents were selected, two distinct 

crossover operations were performed. First, the matrix of connection infor-

mation was crossed over, creating an architecture that was a hybrid of the 

architectures from the two parents. Instead of the classic technique of treating 

the matrix as a single long vector and selecting a crossover point (or points), 

the crossover operation acted on the level of entire rows and/or columns of 

the matrix. The fi rst step of this process was to set the offspring’s connection 

9780521113649c01_p10-52.indd   319780521113649c01_p10-52.indd   31 5/28/2010   2:38:29 PM5/28/2010   2:38:29 PM



John K. Kruschke and Richard A. Hullinger32

matrix to be an exact copy of the fi rst parent’s matrix. Then specifi c rows/

columns from the second parent’s connection matrix were copied into the 

corresponding rows/columns of the offspring. Transplanting an entire row of 

the connection matrix from a parent had the effect of copying all of the “out-

going” connection information – connection types and connection weights – 

from a particular node in the architecture. For example, if the third row of 

a parent’s matrix was crossed over to the offspring, then all of the parent 

network’s connections from node three to other nodes in the network would 

be copied into the offspring. Similarly, transplanting an entire column of the 

connection matrix had the effect of copying all of the “incoming” connection 

information. The particular rows and columns that were crossed over were 

selected randomly, and the crossover could select a single row and/or column, 

multiple contiguous rows and/or columns, or multiple non-contiguous rows 

and/or columns. 

 Once the connection matrix crossover operation was complete, the second 

crossover operation was performed. In this procedure the genetic material spe-

cifying the agent’s learning   rates was crossed over. In the agents the learning   

rate settings were stored as a vector of fl oating point values specifying the slow 

and fast learning   rates for each layer of the network. As with the connection 

matrix, the fi rst step of the process was to make an exact copy of the fi rst par-

ent’s learning   rate settings in the offspring. Next, a standard version of cross-

over was implemented. A single crossover point was randomly selected in the 

offspring’s learning   rate vector and the learning   rate settings from the second 

parent were spliced into the offspring from that point forward. Following cross-

over, the resulting agent underwent the same mutation process described for 

asexual reproduction. 

 At the beginning of each generation a randomly selected context   environ-

ment was created and all agents were trained in the same type of environment. 

Agents were exposed to a randomized block of the four stimuli from one con-

text  , then the context   was switched and the four trials from the second con-

text   were randomly presented. This continued for a total of 80 learning   trials. 

Within each generation, all agents were presented with the same sequence of 

training trials: the mapping of the context   and focal cues, the context   switches, 

and the specifi c trial order was identical across agents. To monitor the overall 

accuracy of the evolving agents, at the end of an agent’s lifetime it was pre-

sented with a randomized block of the eight stimuli from the environment 

and its responses   to those stimuli were recorded. As with the highlighting test, 

these trials had no bearing on the agent’s fi tness. The agent was labeled as 

“successful” in the context   environment if it made ordinally correct decisions 

across all eight of these test trials. 
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      Results: evolved learners exhibit highlighting 

 Because evolution   via a genetic algorithm   is an inherently probabil-

istic and noisy process, data must be collected from large numbers of simu-

lations and then analyzed both aggregately and as independent evolutionary 

runs before strong conclusions can be drawn. In the fi rst set we ran 50 differ-

ent populations for 4000 generations each, tracking for each generation the 

agent’s fi tness, accuracy, highlighting status, successfulness, and details about 

their architectures and learning   rates. 

 Across the 50 populations, the evolved networks diverged into two distinct 

architectural solutions, shown in  Figure 1.7 . There was a local maximum in 

the fi tness landscape not far from where the populations began. Populations 

quickly evolved to have fi xed-weight connections between the input and hid-

den layers and with learning   connections from the hidden layer to the output 

node. This solution cannot achieve 100% accuracy in the context   environment, 

but it can make correct eat/avoid decisions on 7 of the 8 stimuli, which is better 

accuracy than many other potential architectures. Almost all of the simulated 

populations converged on this architecture in their early generations, but the 

vast majority eventually evolved away from this sub-optimal solution. Only 3 of 

the 50 simulations reached 4000 generations without moving away from this 

architecture.    

 The remaining 47 populations evolved to a higher-accuracy architecture 

marked by learning   connections on both the hidden and output levels. Not sur-

prisingly, these populations performed well in the context   environment, with 

nearly all of the agents in each population achieving perfect ordinal accuracy 

on the fi nal eight testing trials. Within this architecture, two distinct solutions 

were found by the simulations. In 43 of the 47 successful runs, a matched-rate 

solution evolved. These populations converged on a solution where the learn-

ing   rate on the hidden layer and the learning   rate on the output layer evolved 

to be similar values (typically around 30). In the other four runs, the popula-

tions converged on a solution with a high output learning   rate. These agents 

evolved a learning   rate to the output layer that was 40 to 50 times higher than 

the learning   rate on the hidden layer (with rates between 70 and 100 on the 

output layer and 1 to 2 on the hidden layer). 

 Both the matched-rate solution and the high output-rate solutions learned the 

environment quickly, and the evolved agents were not making any  ordinal  mis-

takes on the learning   trials at the end of their lives. However, only the matched-

rate agents showed signs of attentional learning   as tested with the highlighting 

task. After the highlighting training, the matched-rate agents show a moderate 

preference for response   E when probed with cue  I (E  ≈ 0.6,  L  ≈ 0.4) and a similar 

preference for response   L when probed with cue PE.PL  (E  ≈ 0.4,  L  ≈ 0.6). Overall the 
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 Figure 1.7      Two classes of evolved architectures. The top architecture has all 

fi xed-weight (non-learning) connections from the input to the hidden layer and 

learning connections to the output layer. These agents can only perform a linear 

division of the solution space and as a result can respond correctly on up to 7 of 

the 8 distinct learning trials. The bottom architecture has fi xed 1-to-1 weights on 

the direct input connections and fi rst-fast learning connections between input 

nodes as the adjacent hidden nodes. The connections between the hidden nodes 

and the output nodes were learning connections; slow-learning in some agents and 

fi rst-fast learning in others. As a result of learning connections on the lower layer, 

the agents in this class of architectures are not limited to a linear discrimination of 

the solution space. Therefore, these agents can learn to respond correctly on all 8 

of the distinct learning trials.  
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torsion of preference is not quite as strong as that seen in the hill-climbing simu-

lations, but it does demonstrate clear highlighting effects  . The high output-rate 

solutions showed no preference for E or L when presented with either of the crit-

ical test items. Therefore, it appears as though the matched-rate agents were solv-

ing the context   environment through the use of learned attentional  mechanisms 

while the high output-rate agents were using a non-attentional solution. 

 This distinction between the attentional and non-attentional solutions 

allows us to look at whether or not an attentional mechanism is truly adaptive 

in the context   environment. If attention   is one of many equivalent ways to 

learn quickly and perform well in the environment, then we should not see any 

clear difference between the overall fi tness of the attentional creatures when 

compared to those that do not exhibit signs of learned attention  .  Figure 1.8  

shows that this is not the case. If we plot the average fi tness levels of the best-

performing 10% of the agents in both the attentional and non-attentional solu-

tions, we see that the agents with learned attention   are clearly outperforming 

the agents that have not evolved an attention  -based solution.    

 Analysis of the architectures shows that the evolved agents match our inter-

pretation of learned attention  . Recall that the evolved agents are constrained 
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 Figure 1.8      A comparison of the average fi tness of the best-performing agents that 

exhibit learned attention (i.e. showed signs of highlighting) vs. agents that learned 

the correct responses to all 8 training items in the context environment but did 

not exhibit signs of attention. Attentional mechanisms clearly confer a fi tness 

benefi t in the context environment.  
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to have fi xed 1-to-1 connections between the input nodes and their direct 

hidden nodes, making the hidden layer an internalized representation of 

the outside world. In these networks attention   can then be thought of as 

any mechanism that operates on those internal representations to either 

enhance or suppress the strength of the internal representations. Under this 

defi nition of attention  , the learned connections from input nodes to adja-

cent hidden notes are the implementation of a learned attention   mechan-

ism. This conceptualization of attention   fi ts well with the evolved solutions. 

In the matched-rate solutions, the learning   rate on the connections between 

the input nodes and their adjacent hidden nodes were reasonably high, 

allowing for the presence of particular cues in the environment to cause the 

internal representation of other cues to be enhanced or suppressed as dic-

tated by the structure of the environment. These are the agents that showed 

the hallmarks of attentional learning   as measured by their responses   on the 

highlighting task. 

 In the high output-rate solutions, the learning   rate on the hidden-to-output 

layer was very high. When trained using backpropagation, this arrangement 

means that most of the error  -driven weight changes happen at the output level, 

and little error   signal is propagated to the lower level. The small error   that is 

propagated has even less infl uence because of very low learning   rates between 

the input and hidden nodes. Therefore, the high output-rate solutions do not 

learn to effectively enhance or suppress the critical internal representations 

and do not show the corresponding signs of learned attention  . 

 Further evidence that learned attention   (as represented by fast learning   of 

activation or suppression of internal representations based on input cues) does 

confer an adaptive benefi t can be seen in the evolution   of the learning   rates 

and fi tness for single populations.  Figure 1.9  shows plots from a population that 

eventually evolved attentional agents. While this plot is the clearest example 

of the connection between the learning   rates and fi tness, nearly all of the 43 

runs that evolved attentional mechanisms show the same basic relationship 

between the learning   rates and fi tness.    

 Early in the simulated evolution  , the agents evolve fi xed-weight connections 

between the input and hidden layers and learning   connections from the hid-

den layer to the output node, allowing them to learn correct responses   to 7 

of the 8 stimuli. In  Figure 1.9 , the result of this architectural improvement 

can be seen by the plateau in average fi tness that begins around generation 

300, where the fi xed-weight architecture takes over the population. The fi xed-

weight architecture dominates the population until generation 1800, when the 

population’s average fi tness moves to a slightly higher plateau. This new archi-

tecture is the high output-rate architecture described above. The learning   rate 
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for the hidden-to-output layer is at its highest levels during this period of evo-

lution  . Simultaneously at the beginning of this period, the connections on the 

input-to-hidden layer make the switch to learning   connections, but with very 

low learning   rates. This solution offers a slight improvement, but it does not 

yet maximize performance. 

 Around generation 2400, the population shows a dramatic improvement in 

fi tness. It is only when the learning   rates (both slow and fi rst-fast) at the input-

to-hidden level increase, and the learning   rates on the hidden-to-output level 

decrease, that the fi tness is maximized. The increase in the input-to-hidden 

layer learning   rate allows an agent to shift attention   towards or away from focal 

cues based on the context   cues. The decrease in the hidden-to-output learning   

rate allows more of the error   signal to be propagated to the lower layer, cre-

ating more effi cient error  -driven attentional shifts. These changes, which can 

be seen occurring between generations 2400 and 2700 in  Figure 1.9 , coincide 

with the population’s transition from non-highlighting agents to highlighting 

agents, as shown in the upper panel. 
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 Figure 1.9      Data from a single population showing the relationship between 

learning rates, fi tness, and highlighting across generations. The top graph shows 

the average agent fi tness and the percentage of the agents in the population that 

show highlighting effects. Fitness has been scaled so that a fi tness level of 100 

indicates perfect performance across all learning trials. The lower graph displays 

the average learning rates for the same population.  
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     Quantifying the improvement in fi tness 

 It is useful to quantify the improvement in average fi tness when a popu-

lation makes the evolutionary step from non-highlighting to highlighting. For 

these calculations, a population was considered to be a non-attentional popu-

lation until 10 consecutive generations all had at most 10% of the population 

showing attention   shifting, as measured by the ordinal highlighting torsion 

described above. A population was considered to be an attentional population 

when over 90% of the agents in the population showed the signature highlight-

ing torsion for 10 consecutive generations. Populations that had between 10% 

and 90% attentional agents were considered to be in transition. For example, 

in  Figure 1.9 , the population is non-attention shifting before generation 2471, 

at which point 10 straight generations all had at least 10% of the population 

showing signs of attention   shifting as measured by highlighting. The transi-

tion period lasted until generation 2530, when 10 consecutive generations each 

had greater than 90% of the population producing responses   consistent with 

highlighting. 

 As a measure of how much the fi tness improves from non-attentional popula-

tions to attentional populations, we calculated the difference of mean fi tnesses 

across phases relative to the standard deviation of fi tnesses within phases. This 

measure is analogous to “effect size” in statistics and  dl  in signal detection the-

ory. To calculate the effect size, the average fi tness of the fi nal 100 generations 

of the non-attentional population (generations 2371–2470 in the simulation 

shown in  Figure 1.9 ) was subtracted from the average fi tness of the fi rst 100 

generations of the attentional population (generations 2530–2629 in  Figure 

1.9 ), and the difference of the two means was divided by the average stand-

ard deviation within the two windows. For  Figure 1.9 , this yields an effect size 

of 5.5. In other words, when the population changes from non-attentional to 

attentional, the fi tness improves by more than 5 standard deviations of ordin-

ary generation-to-generation variation. 

       The dynamics of context   duration 

 We have shown that attentional mechanisms provide learning   benefi ts 

in a cue-outcome structure where there are context-dependent relevances   of 

cues, when the context   switches at a particular rate. In this section we explore 

the robustness of the attentional advantage as a function of the rate of context   

switches. We fi nd that the attentional advantage is robust across different rates 

of context   switching, but is strongest at an intermediate rate. We explain the 

reasons for this “sweet spot” in the rate of context   switches, and gain some 

additional insight into why attention   can help learning.   
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 We ran simulations that were identical to the simulations described above 

except that the number of trials between context   shifts was changed. In the 

fi rst simulation, the agents saw a single trial in the fi rst context   before switch-

ing to the next context   for one trial, then back to the fi rst context  . In the 

second simulation, the agents saw two trials from a particular context   before a 

switch, and so on. In total, we tested context   durations of 1, 2, 4, 8, 12, 16, 20, 

30, and 40 trials. In these runs, the agent’s lifetime was always set to 80 trials; 

consequently, in the fastest shifting environment the agent would experience 

79 context   shifts and in the slowest shifting environment the agent would only 

experience a single context   shift. 

  Figure 1.10  shows the benefi t of adopting an attentional architecture as a func-

tion of the number of trials between context   shifts. Each data point on the graph 

represents the average effect size across 50 simulations for each context   length. 

The graph of effect sizes shows an inverted U-shaped relationship between the 

relative benefi t provided by the evolution   of attentional mechanisms and the 

context   length. While the populations all benefi ted from the evolution   of atten-

tional mechanisms, the shortest and longest context   lengths exhibited smaller 

gains in fi tness than the populations evolved in moderate-length contexts  .    
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 Figure 1.10      Effect size for the improvement in fi tness from non-attentional to 

attentional populations as a function of number of trials between context shifts.  
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  Figure 1.11  helps to interpret this result. When the context   duration is brief, 

and context   is changing very frequently, the context   cues vary as frequently 

as the outcomes and the focal cues. Consequently, the associations   from con-

text   cues to outcomes can track spurious short-term covariation, leading to 

diffi culty in discovering a stable solution. Without sustained time in a given 

context   to learn which cues are focal and which are context  , building the right 

associations   is a challenging task. Therefore, in the generations before the 

population makes the shift to architectures with learned attention  , there is 

considerable variation in individual agent’s success, and large variance in the 

average population fi tness. This variability can be seen in the upper panel of 

 Figure 1.11  as the large variation in fi tness for generations 200–1300, as if a 

seismograph were recording a large and sustained earthquake. Nevertheless, 
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 Figure 1.11      Average population fi tness for three simulations run with differing 

context lengths. From top to bottom the three graphs show the fi tness across 

generations for populations that experienced context shifts after every trial, 

after every 12 trials, and after 40 trials, respectively. In all three simulations, 

the populations made the transition to attention-shifting architectures around 

generation 1400.  
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attentional learning   was still highly benefi cial. When the populations made the 

transition to attentional mechanisms, at around generation 1400, the average 

fi tness increased drastically. In fact, the mean increase in fi tness from pre-at-

tentional to attentional populations is approximately the same for the short-

duration contexts   as it is for the moderate-duration contexts  , as can be seen 

by comparing the top and middle panels of  Figure 1.11 . But the effect size is 

smaller for the short-duration context   because of the larger variability from one 

generation to the next. For moderate context   durations, the context   was chan-

ging far less frequently than the focal cues, making the environmental regular-

ities easier to learn. However, across the agent’s lifetime, there were still a large 

number of context   shifts, so in order to perform well the agents must not only 

have reacted quickly at the context   boundaries, but must also have preserved 

the associations   from the previous context  , so that those associations   did not 

have to be learned again when the context   recurs. The attentional mechanism 

promotes fast learning   of new associations   by shunting attention   away from 

previously learned associations   that are causing errors   in the new context  . This 

allows for the rapid acquisition of new associations   on the most diagnostic 

cues, and it allows for preservation of previous associations   on the cues that 

are no longer relevant in the new context  . As a result, when an agent evolves 

an attention  -shifting architecture, it rapidly dominates the population and the 

population’s average fi tness drastically increases.    

 As the context   duration extends, the few errors   produced in the fi rst few 

 trials of a new context   become less costly to the agents, so fast learning   becomes 

less of a priority. At the extreme, where agents experience only a single context 

shift  , we see only a small improvement in fi tness for the evolution   of atten-

tional mechanisms. The bottom panel of  Figure 1.11  shows that when there 

is only a single context   shift in an agent’s lifetime (i.e., context   length 40), the 

pre-attentional agents were already performing very well. With only one con-

text   shift to contend with, the networks rapidly evolved architectures like those 

of the non-successful, non-highlighting, relatively poor solutions from the ori-

ginal 4-trial context   simulations. In the 40-trial context   environment, the best 

pre-attentional agents had fi xed weights across all connections between the 

input and hidden layer, and learning   connections with moderately high learn-

ing   rates connecting the hidden and output layers. Analysis of these networks 

shows that the high learning   rates allow them to quickly and accurately learn 

the regularities of the context   into which they are born. They perform well for 

40 learning   trials, and then switch contexts  . In the fi rst few trials of the new 

context   they make a few errors  , but the high learning   rates of the output con-

nections quickly learn associations   for the mappings of the new context  . Since 

the agents will never return to the original context   it is of little consequence 
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that the originally learned associations   are overwritten at the context   bound-

ary. In this environment attention   does not provide a strong adaptive benefi t 

because fast learning   rates alone are enough to perform nearly optimally. 

 In summary, attentional mechanisms can be especially benefi cial when 

 stable and useful associations   should be retained for future re-use, despite a 

temporary change to a new context   in which the associations   are not useful. 

When the changes of context   are very frequent, there is a benefi t from atten-

tional mechanisms, but the frequent changes of context   cause learning   to be 

noisy within a context  , and therefore cause the relative benefi t of attention   to 

be diluted. When the changes in context   are rare, then only rarely are there 

costs incurred from the context   change, and therefore only little advantage is 

gained by attentional mechanisms. 

    Discussion 

 Our simulations have demonstrated that selection of fast learners at 

the behavioral level, as measured by high accuracy over the course of learning  , 

also favors attentional learning   at the behavioral level, as measured by exhib-

ition of highlighting. We have shown that the fastest learning   at the behavioral 

level is instantiated at the mechanistic level by particular backprop architec-

tures that include learnable, contextual modulation of cue activations. These 

demonstrations explored a delimited space of possible mechanistic instanti-

ations. Future work will explore a wider range of possible learning   architec-

tures and mechanisms. Our demonstrations also explored a limited range of 

learning   environments. The next section reports results from additional vari-

ations in environments to bolster our suggestion that attentional learning   may 

facilitate overall accuracy in a wide array of situations. 

     Environments that encourage attentional learning   

 We have emphasized a particular environmental structure for which 

learned selective attention   is adaptive, namely, the structure in  Table 1.1  that 

expresses context-dependent cue relevance  . Presumably, there are variations 

of this environment that would also engender attentional learning  . We believe 

that a key motivator for the evolution   of attentional learning   is the combin-

ation of an environmental contingency   structure in which cue relevance varies 

according to context  , with a reproductive advantage given to fast learners. The 

structure in  Table 1.1  (illustrated in  Figure 1.1 ) was our attempt to distill the 

essence of such an environment. 

 We speculate that environments with more contextual dependencies would 

produce even stronger benefi ts for attentional learning  . For such environments, 
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most cues would be irrelevant in most contexts  . Environments in which there 

is massive irrelevance can be very costly to learning   agents, because learning   

will track the irrelevant variation and cause error   on subsequent occasions, 

or at least be costly metabolically. These costs can be mitigated by learning   to 

suppress attention   to irrelevant cues, according to context  . Therefore, one goal 

for future research is to simulate environments that expand the basic structure 

shown in  Table 1.1  across many more cues. 

 In the remainder of this section we describe two other environments that 

also yield an advantage for attentional learners. In both environments, the 

cue–outcome mapping is linearly separable, unlike the structure of  Table 1.1 . 

Because the structures are linearly separable, perfect accuracy can be achieved 

with only a single layer of connections, and there is no structural necessity to 

evolve an attentional layer in the network. Nevertheless, when fi tness is based 

on speed of learning  , not just eventual accuracy, attentional architectures do 

evolve. 

     Linearly separable, four outcomes, with contextual dependency 

  Table 1.2  and  Figure 1.12  show a training environment in which both 

the relevant cues and the outcomes depend on the context  . Notice that in this 

structure there are four outcomes instead of only two. Like the training envir-

onment previously studied in  Table 1.1 , when context   cue I is present, focal 

cues A and B are relevant, but when context   cue J is present, focal cues C and 

D are relevant. This new structure has different outcomes in the two contexts  . 

Specifi cally, outcomes X and Y occur in context   I, but outcomes V and W occur 

in context   J.       

 Table 1.2     A linearly separable training environment that has context-dependent 

relevancies and four outcomes. See corresponding illustration in  Figure 1.12 . 

Context Focal Cues Outcomes

I J A B C D X Y V W

1 0 1 0 1 0 1 0 0 0

1 0 1 0 0 1 1 0 0 0

1 0 0 1 1 0 0 1 0 0

1 0 0 1 0 1 0 1 0 0

0 1 1 0 1 0 0 0 1 0

0 1 1 0 0 1 0 0 0 1

0 1 0 1 1 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1

   Note : Presence of a cue or outcome is denoted by a 1, and absence is denoted by a 0.  
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 The reason this structure in  Table 1.2  is interesting is that it is linearly sep-

arable, unlike the previous structure. This linear separability means that the 

mapping can be solved merely by learning   the connections fanning into the 

outcome nodes, and there is no need to learn any “lateral” connections to the 

hidden nodes. In other words, the cue–outcome contingencies by themselves 

do not demand any learned attention  . 

 Despite not needing attentional learning   to correctly solve the mapping, the 

solution can be learned more quickly when attentional learning   is available. 

This claim is confi rmed through hill-climbing optimizations. Consider fi rst a 

restricted architecture in which there is no multiplicative gating and in which 

the learning   rates on the connections fanning into the hidden nodes are set 

to  zero . This is like the “base-agent” architecture shown in  Figure 1.6 . We use 

hill-climbing optimization to fi nd the optimal learning rate   for the outcome 

nodes. In this case, the accuracy of prediction gets fairly good, with RMSD = 

0.211, because the outcome layer alone can solve the mapping. A represen-

tative run for the best outcome-learning   rate is shown in the upper panel of 

 Figure 1.13 . In the subsequent highlighting test, however,  no  highlighting is 

exhibited. No highlighting occurs because there is no attentional shifting at 

the hidden nodes.    
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 Figure 1.12      Spatial representation of the training structure in  Table 1.2 . Each 

circle represents a combination of cues A, B, C, D, I, and J. The letter in the circle, 

V, W, X, or Y, represents the correct outcome for that cue combination. The square 

on the left has a letter I in its center to indicate that cue I is present, while the 

square on the right has a letter J in its center to indicate that cue J is present. The 

upper circles have cue D present, while the lower circles have cue C present. The 

remaining dimension marks whether cue A or cue B is present. Although this 

diagram represents A–B, C–D, and I–J as if on dimensions, the basic structure does 

 not  encode or assume any dimensional relationship among the cues.  
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 Figure 1.13      Examples of learned weights when trained on the linearly separable, 

four-outcome structure shown in  Table 1.2  and  Figure 1.12 . The upper panel shows 

a typical run when using the best learning rate on the output nodes and  when 

there is zero learning of connections fanning into the hidden nodes , resulting in RMSD = 

0.211. Notice that the weights to the hidden nodes from the input nodes, shown 

in the upper left matrix, remain fi xed at their starting values of zero (except for 

the diagonal weights, which are fi xed at 10). The lower panel shows a typical run 

when using the best learning rates when there  is  learning allowed for connections 

fanning into the hidden nodes, resulting in RMSD = 0.174. Notice that the weights 

to hidden nodes from input nodes, in the lower left matrix, have mostly learned 

non-zero values. The model has learned that when cue I is present, attend to cues A 

and B and suppress cues C and D (and the opposite for when cue J is present). The 

learning rates for the lower panel  do  produce highlighting, but the learning rates 

for the upper panel do  not  produce highlighting.  
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 When the architecture includes multiplicative gating and learning   of hid-

den-node connections (as in  Figure 1.2 ), then the problem is solved with far 

less total error   (RMSD = 0.174). A representative solution is shown in the lower 

panel of  Figure 1.13 . Importantly, the subsequent highlighting test shows very 

robust highlighting effects  . This effect occurs because highlighting is mediated 

in these networks by the learning   of attentionally modulating connections from 

cues to their hidden-layer representations. The point here is that even though 

the attentionally modulating connections are not necessary to accurately solve 

the cue–outcome mapping, those learnable connections do improve the speed 

of learning  . Those learnable connections also, as a side effect, engender high-

lighting. Again, this result supports our general claim that faster learning   can 

be accomplished by attentional learning  , in this case even when attentional 

learning   is not necessary to solve the task. 

      Linearly separable with no contextual dependency 

  Table 1.3  and  Figure 1.14  show a training environment in which the cue–

outcome mapping is linearly separable, and the cues are structurally equivalent 

to each other. In other words, the labeling of one cue as “context  ” is completely 

arbitrary. (This structure corresponds to what Shepard  et al . [ 1961 ] called Type 

IV if the cues are represented on dimensions as shown in  Figure 1.14 .)       

 Consider fi rst what happens when the 8 training items are randomly inter-

mixed, such that each 8-trial block of training contains an independently 

permuted order of the 8 training items. For this training regime, there is no 

 Table 1.3     A training environment that is linearly separable, with no structurally distinct 

context cue. The “context” and “focal” cues are structured identically, so the labeling is 

arbitrary. See corresponding illustration in  Figure 1.14 . 

Context Focal Cues Outcomes

I J A B C D X Y

1 0 1 0 1 0 1 0

1 0 1 0 0 1 1 0

1 0 0 1 1 0 1 0

1 0 0 1 0 1 0 1

0 1 1 0 1 0 1 0

0 1 1 0 0 1 0 1

0 1 0 1 1 0 0 1

0 1 0 1 0 1 0 1

   Note : Presence of a cue or outcome is denoted by a 1, and absence is denoted by a 0.  
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structural or temporal distinction whatsoever between context   and focal cues. 

When all the learning   rates are freely optimized the weights fanning into the 

hidden nodes have only small learning   rates. Consequently, when tested on 

highlighting, the optimal-learning   network does not show highlighting. This 

makes intuitive sense: when the training structure is completely symmetric 

and provides little benefi t from attentional learning  , then little, if any, high-

lighting will be exhibited. 

 Consider what happens, however, if we make one of the cues relatively 

 stable across trials during training, such that the cue behaves as a temporal 

context   cue. For this simulation, we blocked together the four trials with cue I, 

and alternated them with blocks of four trials with cue J. Otherwise the train-

ing was the same as before. For this blocked-context   training procedure the 

best learning   rates on the hidden nodes were reasonably high. Examination 

of the learned weights revealed why the attentional learning   was benefi cial. 

The model learned that when (context)   cue I was present, cues A and C should 

be attended while cues B and D should be suppressed, but when (context  ) cue 

J was present, cues B and D should be attended but cues A and C should be 

suppressed. Moreover, these attentional weights were symmetric in sign, such 

that, for example, when cues A or C were present, they gave attention   to cue I 

but suppressed cue J. Importantly, when subsequently tested in the highlight-

ing procedure, the network showed robust highlighting effects  . 

 The reason the network exhibited highlighting is the same as explained 

for previous simulations: when there is signifi cant learnability of connections 
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 Figure 1.14      Spatial representation of the training structure in  Table 1.3 . Although 

this diagram represents A–B, C–D, and I–J as if on dimensions, the basic structure 

does  not  encode or assume any dimensional relationship among the cues.  
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between cues and their hidden-layer representations, then, in the highlighting 

procedure, the network learns to ignore the shared cue I in the presence of cue 

PL, as shown, for example, in  Figure 1.4 . This learned modulation of cue activa-

tions protects the initially learned association   from hidden node I to outcome 

E, and yields a strong association   from hidden node PL to outcome L, again as 

shown in  Figure 1.4 . 

 In summary, the structure of  Table 1.3  and  Figure 1.14  is symmetric and 

does not demand large learning   rates on the hidden nodes when the items 

are trained in random order. But when one pair of cues is alternated more 

slowly than the other cues, whereby the relatively tonic cues serve as context   

for the others, the model does benefi t from relatively larger learning   rates on 

the hidden layer, and consequently shows clear attentional learning   as assayed 

by highlighting. 

      Summary: environments that encourage attentional learning   

 The training structure in  Table 1.1  and  Figure 1.1  was designed to 

embody two key qualities that might encourage attentional learning  . The 

structure incorporated cues that were individually uncorrelated with the out-

comes, but which indicated what other cues were predictive of the correct 

outcomes. The indirectly relevant “context  ” cues were also held relatively con-

stant across training trials. We showed that the structure did indeed encour-

age learning   architectures and learning   rates that exhibited attentional effects 

when the goal was to maximize total accuracy across the lifetime of training. 

 The structures of the present section ( Table 1.2  and  Table 1.3 ) begin to expand 

and delimit the range of environments in which attentional learning   improves 

overall accuracy. We showed that even when hidden-layer learning   is not neces-

sary for eventual perfect accuracy, attentional learning   can still be benefi cial 

for acquiring the mapping quickly. This benefi t of attentional learning   for over-

all accuracy is especially strong when there are contextual cues to relevance, as 

exemplifi ed for structural context   cues by  Tables 1.1  and  1.2 , and for temporal 

context   cues by  Table 1.3 . In the latter case, even when the mapping is linearly 

separable and perfectly symmetric, if one cue merely alternates more slowly 

than the others, and thereby may serve as a context   cue, then attentional learn-

ing   is adaptive. Importantly, we also showed that attentional learning   is not 

merely trivially  always  adaptive. Specifi cally, when the structure is symmetric 

and training is ordered randomly then the best hidden-layer learning   rates are 

weak and little, if any, highlighting occurs. Another case in which attentional 

learning   had little benefi t was when training with the original structure of 

 Table 1.1  but alternating the context   only once; recall that in this case the 

evolved architecture settled on no learning   of hidden-layer weights because 
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the cost of the single context   switch could be absorbed by fast outcome-weight 

learning   alone. 

       Costs and benefi ts of selective attention   

 When considering selective attention  , many people think of it as a 

necessary evil caused by limited-capacity processing in the brain and body. In 

a review of the causes and consequences of limited attention  , Dukas ( 2004 , p. 

107) defi ned limited attention   as a “restricted rate of information processing by 

the brain” and he focused on the costs of limited attention  , such as hindering 

foragers’ probability of detecting cryptic food items, and failing to notice an 

approaching predator while engaged in an attention  -demanding task. Clark and 

Dukas ( 2003 ) developed a detailed model of foraging while avoiding predators. 

They analyzed the optimal width of the focus of attention  , and optimal pro-

cessing capacity. They also assumed an accelerating metabolic cost of increased 

processing capacity. From the model, they concluded that the use of selective 

attention   was an optimal solution to the trade-offs between foraging for cryptic 

food, avoiding predators, and sustaining a high-demand processing system. 

 In our approach, however, we have not had to assume an increased meta-

bolic cost for higher learning   rates. We have not had to assume any additional 

cost for inclusion of additional learnable connections. Instead, selective atten-

tion   emerged as an optimal solution to an informational problem, not as a 

compromise conceded to physical shackles. In environments with context-de-

pendent cue relevance   learnable allocation of attention can   improve speed of 

learning  . 

 Moore ( 2004 ) provided an extensive review of types of learning  , including 

habituation  , sensitization  , discrimination   learning  , imprinting, navigation, 

mimicry, instrumental learning  , language acquisition, etc. He suggested a large 

cladogram indicating possible evolutionary relationships among the various 

forms of learning  . But nowhere in the catalog did there appear the notion of 

learning   to attend. We believe, on the contrary, that learning   what to attend to 

is a critical aspect of learning   well. 
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