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A Model of Probabilistic Category Learning

John K. Kruschke and Mark K. Johansen

Indiana University, Bloomington

Amew connectionist model (named RASHNL) accounts for many ‘‘irrational” phenomena
found in nonmetric multiple-cue probability learning, wherein people learn to utilize a number
of discrete-valued cues that are partially valid indicators of categorical outcomes. Phenomena
accounted for include cue competition, effects of cue salience, utilization of configural
information, decreased learning when information is introduced after a delay, and effects of
base rates. Experiments 1 and 2 replicate previous experiments on cue competition and cue
salience, and fits of the model provide parameter values for making qualitatively correct
predictions for many other situations. The model also makes 2 new predictions, confirmed in
Experiments 3 and 4. The model formalizes 3 explanatory principles: rapidly shifting attention
with learned shifts, decreasing learning rates, and graded similarity in exemplar representa-

ton.

In everyday life, people encounter many situations in
which they must learn to predict outcomes that are only
imperfectly correlated with predictive cues. For example,
check-out clerks at grocery stores learn to predict whether a
customer is old enough to purchase alcoholic beverages on
the basis of imperfectly predictive cues such as the custom-
er’s style of clothes, skin complexion, mannerisms, and
spoken vocabulary. Seafarers learn to forecast foul weather
on the basis of imperfectly predictive cues such as the size of
waves, the shapes of the clouds, and the movements of
animals. Investors learn to buy or sell stocks on the basis of
imperfectly predictive cues such as grocery sales, the
weather, and the behavior of other investors.

When learning to predict an outcome on the basis of cues,
it would seem rational or optimal to learn about all the
correlations as they actually exist in the world. Instead, it is
the case that a more valid or more salient cue detracts from
the learning of a less valid or less salient cue. Moreover, the
inclusion of additional irrelevant cues detracts from the
learning of valid cues. This cue competition in associative
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learning is evident across a variety of situations and across a
number of animal species. It occurs, for example, when
human learners make ratings of the strength of causal
relationships between occurrences in a video game (Baker,
Mercier, Vallée-Tourangeau, Frank, & Pan, 1993). Cue
competition also occurs when rats or pigeons learn about
associations between cues such as tones or lights and
outcomes such as food, shock, or air puff (Wagner, 1969;
Wagner, Logan, Haberlandt, & Price, 1968; Wasserman,
1974). Cue competition effects have even been found in
leaming by honeybees (Shapiro & Bitterman, 1998). The
pervasiveness of cue competition suggests that it is a
fundamental characteristic of cognition.

Such “irrational” learning is not limited to underutiliza-
tion of competing relevant cues. In some situations people
will positively utilize cues that are, in fact, irrelevant and
undiagnostic. For example, when two outcomes have differ-
ent frequencies of occurrence, that is, different base rates,
then there are situations wherein people will tend to
associate a nondiagnostic cue with the more common
outcome (Kruschke, 1996a, Experiment 4). At the same
time, people will apparently neglect the base rates of the
outcomes, and a cue value that is objectively undiagnostic
will be associated with the rare outcome (Gluck & Bower,
1988b). With such well-documented cases of irrational
learning in laboratory experiments that are presumably not
altogether unrepresentative of the natural environment, it is
puzzling that humans (or any other of the many species that
show these effects) have survived, indeed thrived, all these
millenia.

In this article we consider cue utilization in a particular
experimental framework, known as nonmetric multiple-cue
probability learning (NMCPL). In this framework, multiple
cues and outcomes have discrete values, hence the adjective
nonmetric. A wide variety of interesting effects are mani-
fested in this simple paradigm, so it is tractable yet broadly
representative of more complicated scenarios. In this article
we introduce a new model that addresses a wide spectrum of
results emanating from this paradigm. No previously pro-
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posed model has been able to address all these effects. One
psychological mechanism highlighted by this new model is
limited-capacity attention that rapidly shifts to reduce error.
On any given learning trial, the first thing that the model
(and, we argue, a person) does is rapidly shift attention away
from cues that cause error, toward cues that reduce error. The
shifted distribution of attention is itself learned, so that on
subsequent trials the appropriate cues can be better attended
to. The shift of attention is both rash and rational: rash
because it is rapid, and rational because it quickly reduces
error and mitigates interference between previous and novel
learning. Thus, the rash shift helps to achieve the rational
goal of learning quickly. The model is therefore named
RASHNL, which stands for Rapid Attention SHifts ‘N’
Learning. ‘

Our goals in this article are, first, to review some of the
major findings in NMCPL and to demonstrate that the new
model, RASHNL, can account for these seemingly irrational
behaviors, and second, to show that RASHNL makes two
new predictions, confirmed by new experiments. The suc-
cess of the model, which is a formal expression of informal
explanatory principles, adds evidence to our claim that the
“irrational”” behaviors are a by-product of the need for rapid
learning.

The article is organized as follows. We first survey a
variety of phenomena observed in NMCPL and briefly
review the failure of all previous models to account for these
results. We then fit RASHNL to the data from two new
experiments (Experiments 1 and 2) that largely replicate
previous results, and we use the best fitting parameter values
to predict a number of other effects reported in the literature.
RASHNL also makes two novel predictions, the first predic-
tion regarding an interaction of the effect of salience on a
relevant cue and the effect of adding an irrelevant cue, and
the second prediction regarding an effect of the salience of
an irrelevant cue. We empirically verify these predictions in
Experiments 3 and 4 and show that RASHNL fits the data
well. The main section concludes by showing that RASHNL
successfully accounts for apparent base-rate neglect and
utilization of irrelevant cues. In the final discussion we
consider how extensions to the model might address nonsta-
tionary environments, and we discuss cue competition
effects observed when cues or outcomes are metric, as
opposed to nonmetric. We conclude by suggesting that many
different species have been exposed to similar environ-
mental demands for rapid learning and that many differ-
ent species have therefore evolved functionally similar
adaptations: rapid attention shifts that produce “irrational”
behavior.

Review of Previous Findings and Models

In reviewing previous findings, it will be helpful to refer
to a concrete example of stimuli and procedure. Stimuli in
some of our experiments consisted of a rectangle that could
be tall or short, which contained a small, vertical line
segment that could be positioned at the left or right, as
shown in Figure 1. The outcome was one of two category
labels. Thus, there were just four possible stimuli, and each
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Figure 1. The four stimuli used in Experiment 1. The stimuli
comprised two binary-valued cues: rectangle height (tall or short)
and line segment position (left or right).

stimulus was probabilistically assigned to two categories.
On any learning trial, the participant saw a stimulus, guessed
the correct category by pressing the corresponding key on
the computer keyboard, and was then told the correct
response. The learner had to glean which category tended to
go with which stimulus. Thus, NMCPL refers to a type of
problem situation and is not a label for a type of cognitive
process (cf. Estes, 1976).

The words cue and dimension are used synonymously in
this article, although in the literature the word cue connotes
an aspect of the physical stimulus and the word dimension
connotes an abstract set of mutually exclusive values. The
distinction is not critical for our purposes, and we hope our
meaning is clear from context.

Definition of Validity and Utilization

To describe the effects found in NMCPL, we must define
the terms validity and utilization precisely. Consider the
example illustrated in Figure 2. In this scenario, there are
two binary-valued cues, such as the cues shown previously
in Figure 1. Each of the four combinations of cues occurs 10
times, for a total of 40 stimulus presentations. There are two
possible categorical outcomes, J and K. The table in the top
left of Figure 2 shows the frequency with which each
stimulus is presented and the frequency that each stimulus is
labeled as Category K by the corrective feedback. For
example, the top left cell of the table, which corresponds to a
stimulus with Value 1 of Cue A and Value 1 of Cue B,
contains the expression “1/10,” which indicates that there
were 10 occurrences of this stimulus, 1 of which resulted in
Outcome K (and hence 9 of which resulted in Outcome J).

The cell frequencies contain complete information about
the outcomes for each stimulus, but they do not transparently
indicate the correlations of the outcome with each dimen-
sion, nor the overall base rate with which each outcome
occurs. We are interested in these base rates and dimensional
correlations so that we can compare them with the extent to
which people actually use the dimensions. The base rates
and correlations can be gleaned from the marginal frequen-
cies shown with the table, computed by summing across
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Corrective Feedback:
Freq Outcome K / Freq Stimulus
Cue A Corresponding
Val1 Val2 vector of cell
- - proportions:
Val.1{1/10]9/10}10/20 p(KIL,1) 1
Cue B p(Ki2,1) 9
.2|5710|5710 |10/20 pIL2)} 4.5
Val.2 0 p(Ki2,2) 5
6/20 14/20 20/40
Validities...
... as orthogonal components of the feedback vector
Base Rate Cue A CueB Configural
1 1 g -1 1 -1 1 -1
9 1 9 1 9 - 9 1
'5 L] l /4=.5 5 ® _1 /4=.2 5 L] 1 /4=O 5 L 1 /4=2
5 1 5 1 5 1 5 -1
... as slopes of the best fitting regression lines
FeedPack FeedPack
‘ lllll ‘ .....
HH g e 1K e
//slope =2 IE— slope =0
333y ] sasse O
} —>Cue A —+ +—Cue B
-1 +1 -1 +1
Val.l Val.2 Val.l Val.2

Figure 2. An example for explaining the definitions of validity (Val.) and utilization. See main text

for discussion. Freq = frequency.

rows or columns. The base-rate validity expresses the
overall mean probability that Outcome K occurs. This
probability has a value in the range of 0—1. The cue validities
express deviations from the overall mean probability. The
example in Figure 2 shows a case in which the base rate, or
overall mean probability, of Outcome K is 50% (20 out of 40
occurrences). The probability of Outcome K, conditional
upon Cue A having Value 2, is 70% (14 out of 20
occurrences). This conditional probability deviates 20 per-
centage points from the base rate. Hence Cue A has a validity
of .20.!

In general, the base rate and dimensional validities are
computed as follows. The cell frequencies are converted to
proportions and put into a column vector, shown at the top
right of Figure 2. These four category proportions fully
specify the structure of the feedback, assuming equal
occurrence of each stimulus combination. These raw propor-
tions do not, however, transparently indicate the correlation
of the correct category with the different stimulus dimen-
sions. The vector of raw proportions is therefore decom-

posed into different orthogonal components that directly
reflect the dimensional influences. This decomposition is the
same as statistical analysis of variance (ANOVA), which
expresses factorial data in terms of a grand mean, main
effects, and interaction (Edgell, 1978; Hoffman, Slovic, &
Rorer, 1968).

The middle row of Figure 2 shows the raw proportion
vector projected onto orthogonal vectors that encode, respec-
tively, the grand mean or base rate of Category K, the main
effect of Cue A, the main effect of Cue B, and the interaction
or configural information of Cues A and B. The projection
operation is accomplished via the normalized dot product,
shown in the figure. For example, the second dot product

! Some earlier articles (e.g., Bjorkman, 1967; Castellan, 1973;
Castellan & Edgell, 1973) defined validity as the product moment
correlation between the cue and the outcome (i.e., the & coeffi-
cient). When the various cue combinations occur with equal
frequency, the validity defined in the main text is half of this
correlation.
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indicates that the validity of Cue A is .2. This means that
there is a tendency (relative to the base rate) for the outcome
to be K when Cue A has Value 2 and for the outcome to be J
when Cue A has Value 1. The four validities (of base rate,
Cue A, Cue B, and their configuration) are simply a
re-expression of the raw proportions, such that each validity
carries independent information, but which is much more
transparently indicative of dimensional and configural infor-
mation than the raw cell proportions.

The validities can also be conceptualized as slopes or
intercepts of best fitting regression lines drawn through a
scatterplot of the raw data. The lower panel of Figure 2
shows the validities of Cue A and Cue B in this manner. The
values of the cues are coded as 1 and —1 on the abscissa, and
the corrective feedback is coded as K = 1 and J = 0 on the
ordinate. The 40 dots in each of the two graphs correspond to
the 40 trials tabulated in the top left panel of the figure. For
example, the lower left graph of Figure 2 shows six dots at
coordinates —1, 1, indicating the six occurrences of Value 1
of Cue A that resulted in Outcome K. The best fitting
regression line has a slope of .2, the same as the validity
computed previously by the dot product. This graph also
illustrates that the maximum possible slope (cue validity) is
.5, because the range of the outcome is 1 and the range of the
cue value is 2. The base rate can also be depicted graphically,
as a single ordinate with no abscissa, and with the best fitting
regression “line” being merely a point at the overall mean.
Finally, the configural validity can be depicted analogously,
but this requires some spatial gymnastics that probably
would obscure more than they would reveal, so these
contortions will not be demonstrated here.

The configuration of cues is informative when the prob-
ability of Outcome K can be better predicted by a nonlinear
combination of cues than by any linear combination alone.
In terms of ANOVA, the configuration is informative when
an interaction is present. Expressed in terms of logical
combinations of cue values, the configuration is informative
when the outcome is correlated with the exclusive-or (XOR)
of the cues, that is, when the mean outcome in the
main-diagonal cells differs from the mean outcome in the
complementary diagonal celis.

Figure 2 provides an example in which the configuration
has nonzero validity. The best fitting linear combination of
the marginal probabilities predicts that stimuli with Value 1
on Cue A should have a 30% (i.e., 6/20) probability of
resulting in Outcome K. Contrary to this best linear predic-
tion, the two cells for which Cue A has Value 1 do not have
30% K outcomes. Instead, for Value 1 of Cue B (and Value 1
of Cue A), the probability of Outcome K is 10% (1/10),
which is 20 percentage points less than the linear prediction.
For Value 2 of Cue B (and Value 1 of Cue A), the probability
of Outcome K is 50% (5/10), which is 20 percentage points
more than the linear prediction. Expressed in terms of an
XOR of the cues, the frequency of Outcome K is 20
percentage points more than the linear prediction if Cue A
has Value 2, or if Cue B has Value 2, but not if both cues
have those values, in which case the probability is 20
percentage points less than the linear prediction. This
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20-percentage-point deviation of the cell probabilities from
the best linear prediction implies a configural validity of .20.

Utilization is computed the same way as validity, with the
only difference being that the array now tabulates response
selections rather than corrective feedback. For example, if a
particular participant gave the same frequency of K re-
sponses as tabulated in Figure 2, then the participant’s
utilization would be the same as the validities, regardless of
whether the participant gave the A responses on the correct
trials or not.

Validities and utilizations (other than base rates) can take
on positive or negative values, depending on how the
“polarities” of cues and outcomes are arbitrarily coded. For
example, if for Cue A, the assignment of Value 1 and Value 2
to codes —1 and 1 were reversed, then the validity and
utilization would change sign.

It is important to realize that a respondent’s utilizations
need not necessarily have any particular relationship with
the actual validities. For example, a participant might be
optimal and always respond K for Value 2 of Cue A and
never respond K for Value 1 of Cue A, and thereby this
participant would have a Cue A utilization of .5, despite the
fact that the cue’s validity is only .2. A participant who
responds with utilization of .5 to a cue of validity less than .5
is said to be “maximizing.” Indeed, a participant might
decide to utilize a cue that in fact has zero validity. In an
extreme case, a perfectly contrary participant might exhibit a
utilization of —.5 for a cue of .5 validity.

Summary of Effects Observed in NMCPL

The NMCPL paradigm has generated a large number of
interesting effects over decades of research. Here we summa-
rize several of the basic phenomena. All of these phenomena
can be interpreted as irrational or nonoptimal.

Increased validity results in increased utilization. Learn-
ers tend to utilize a high-validity cue more than a low-
validity cue, all else being equal. This has been demon-
strated for component information (e.g., Edgell et al., 1996,
Experiment 4), for configural information (e.g., Edgell,
1978, 1980; Edgell & Castellan, 1973), and for base rates
(e.g., Estes, 1964). This effect might be interpreted as
rational behavior, insofar as the behavior reflects the true
state of the world. On the other hand, it might be interpreted
as irrational insofar as optimal performance would dictate
maximal utilization whenever the validity is any nonzero
value. Many species exhibit this effect of approximate
probability matching, or at least nonmaximizing (e.g.,
Mackintosh, 1970).

Increased validity of a different source results in de-
creased utilization. This effect is the classic cue competi-
tion phenomenon. When two sources of information are
present, they tend to compete, such that increasing the
validity of the second source, while leaving the validity of
first source fixed, tends to increase the utilization of the
second source while decreasing the utilization of the first,
fixed-validity source. This competition effect has been
documented for cases in which the fixed-validity source is a
component and the competing source is a component
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(Edgell et al., 1996, Exp. 4) and when the competing source
is configural (Edgell, 1978, 1980, 1993; Edgell & Castellan,
1973; Edgell & Roe, 1995), although in the latter cases the
competitive trends sometimes did not reach statistical signifi-
cance. From a rational or normative perspective, when cues
occur independently, the one of highest validity should be
utilized maximally, regardless of the validities of the other
cues. As mentioned earlier, cue competition effects have
been demonstrated in a variety of experimental settings and
in a range of species. In learning paradigms, cue use has
been shown to depend inversely on the validity of other
cues, for humans, rats, and pigeons (e.g., Baker et al., 1993;
Wagner, 1969; Wagner et al., 1968; Wasserman, 1974).

Increased salience results in increased utilization. 'When
the salience of information is increased, it tends to be
utilized more. The salience of a cue can be defined in various
ways (e.g., as the discriminability or dissimilarity of two
alternative values of the cue). The effect of salience has been
well documented for component information (Edgell, Bright,
Ng, Noonan, & Ford, 1992; Edgell et al., 1996, Experiments
4 and 6). Comparable effects have been observed in concept
learning experiments (which use deterministic mappings
from stimuli to categories), discrimination learning (in
which two stimuli are presented simultaneously), and classi-
cal conditioning (in which the categorical outcome is the
unconditioned stimulus). For a useful review, see Trabasso
and Bower (1968, chap. 6).

It is not yet clear how to define the salience of configural
information, however. For highly separable component
dimensions, the salience of their configuration should,
presumnably, depend only on the saliences of the compo-
nents. For highly integral component dimensions, the sa-
lience of a configuration should be quite distinct from the
salience of the components.

Increased utilization of more salient information is reason-
able from an intuitive perspective, in that people will, by
definition, better notice and learn about more attractive
stimuli. From a rational perspective, however, any informa-
tion of nonzero validity should be maximally utilized,
whether it is salient or not.

Increased salience of a different source results in de-
creased utilization. When two sources of information are
present, increasing the salience of ome source tends to
decrease the utilization of the other source. In conditioning
paradigms, a similar effect is referred to as reciprocal
overshadowing and has been observed in both humans and
rats (e.g., Mackintosh, 1976; March, Chamizo, & Mackin-
tosh, 1992; Ruebeling, 1993). A related effect has also been
observed, anecdotally, in hunting dogs, who can be dis-
tracted from pursuit of their prey by a red herring dragged
across their path. The effect is so strong that it has become a
colloquialism.

This competitive effect of salience has not, however, been
verified in NMCPL by Edgell and colleagues when the
competing cue has zero validity. For example, Edgell et al.
(1992, Experiments 4 and 5) found a nonsignificant trend
toward this competitive trade-off and concluded that the null
effect was true (Edgell et al.,, 1992, p. 587). Edgell et al.
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(1996, Experiments 5 and 6, p. 1477) also found some
nonsignificant trends and concluded that no competitive
effect occurred; that is, the salience of irrelevant dimensions
does not affect the utilization of a valid dimension.

It is possible that the conditioning paradigm, in which a
competitive effect of salience has been found, and the
NMCPL paradigm, in which Edgell and colleagues have not
found a significant competitive effect of salience, differ in
some critical way that erases salience-based competition in
NMCPL. It is also possible, however, that the nonsignifi-
cance of the trends observed by Edgell et al. was a
consequence of experiments with low statistical power,
because, as will be seen, the within-condition variance in
these experiments is large and the effects of salience can be
small.

There are reasons to expect that the competitive effect of
salience should occur in NMCPL. First, there are numerous
analogies between other effects observed in conditioning
and effects observed in NMCPL. Second, consider the
extreme case of changing the salience of a competing
dimension from zero to some typical nonzero value. That is,
the competing dimension is either absent (zero salience) or
present (nonzero salience). This change has a robust effect
on utilization, even when the added source has zero validity,
as described in the next section. Logically, then, comparable
changes in salience, from a small nonzero value to a large
nonzero value, should also have an effect. If no such effect
occurs, then there is a qualitative difference between changes
in salience that do not affect presence and changes in
salience that do affect presence. A third reason to expect a
competitive effect of salience is that RASHNL strongly
predicts that it should occur. Experiment 4 of this article
tests this new prediction.

The addition of an irrelevant source results in decreased
utilization. When an irrelevant component is added to a
stimulus, then the utilization of a fixed-validity source tends
to decrease. This competitive effect has been thoroughly
documented in a number of studies. Castellan (1973)
compared conditions in which a component of fixed validity
was accompanied by different numbers of irrelevant cues.
He found that utilization of the valid component decreased
as the number of irrelevant cues increased. The magnitude of
the decrease was strongest for middling validities. Edgell
and Hennessey (1980) found an analogous effect for the
utilization of base rates. As the number of irrelevant
dimensions was increased, the utilization of the base rates
decreased, and the decrease was strongest for middling base
rates. Edgell et al. (1996, Experiments 1 and 2) reported
similar effects for configural cues. The utilization of a
relevant configuration decreased when irrelevant cues were
added. In reasoning or problem-solving paradigms, it is also
the case that cue utilization depends inversely on the
presence of other irrelevant cues (e.g., Goldstein, 1973;
Nisbett, Zukier, & Lemley, 1981). Thus, cue competition in
NMCPL is representative of a pervasive phenomenon in
cognition.

The deleterious influence of an added irrelevant source
depends on its salience. 'When an irrelevant cue is added to
a relevant cue of greater salience, then the utilization of the
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salient cue will decrease relatively little. When the same
irrelevant cue is added to a relevant cue of lesser salience,
however, then the utilization of the relevant cue will
decrease noticeably. This interaction is a new prediction of
RASHNIL, tested in Experiment 3 of this article.

Delayed introduction of information results in retarded
learning. Probabilistic classification presents a very diffi-
cult environment to the learner, because no matter how much
effort the learner devotes to the task, even optimal respond-
ing generates a large amount of error. The learner must
resign herself or himself to this unavoidable error. It is
plausible that in such situations, people quickly learn to
discount their errors and reduce the rate at which they alter
their knowledge; that is, learners reduce their learning rates
after a limited number of trials. Busemeyer and Myung
(1988) reported evidence of learners decreasing their learn-
ing rates when the participants’ task was to learn the central
tendency of a probabilistic distribution. Indeed, many com-
putational learning algorithms are designed to anneal (i.e.,
decrease) their learning rates in probabilistic environments
(e.g., Almeida, Langlois, Amaral, & Plakhov, 1998; Darken
& Moody, 1991, 1992; Sompolinsky, Barkai, & Seung,
1995), and convergence proofs for various learning algo-
rithms assume decreasing learning rates (e.g., White, 1989).

Edgell (1983) and Edgell and Morrissey (1987) reported
results consistent with this reduction of learning rates.
Training in their experiments began with certain compo-
nents or configurations being informative, but with other
information being introduced after a delay. For example,
some experiments began with just one cue having a nonzero
validity, but after a number of trials, the configural validity
changed from zero to a positive value. The experiments
showed that configural information, introduced only 20
trials after the beginning of the experiment, was utilized far
less than when the sameé information was available at the
beginning of learning. Dimensional (as opposed to config-
ural) information was also utilized less if its introduction
was delayed, with the decrement in utilization being larger
for larger delays.

Utilization of component information is greater than
utilization of configural information. Several experiments
have shown that configural information can be learned, and,
for components and configurations of equal validity, the
component information will tend to be utilized more than the
configural information, as long as the components are of
comparable salience (Edgell, 1980, 1993; Edgell et al.,
1996; Edgell & Roe, 1995). This statement also presumes
that the components are highly separable dimensions. Utili-
zation of component and configural information has not
been compared for highly integral dimensions.

An irrelevant component can be positively utilized. When
a cue is strongly but equally correlated with both of two
outcomes, and one outcome occurs with a much higher base
rate than the other, then people will tend to learn that the cue
is a predictor of the more common outcome. Such learned
utilization of an irrelevant cue has been documented in a
disease diagnosis situation (Kruschke, 1996a, Experiment
4), and the phenomenon poses a difficult challenge for
models of associative learning.
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Apparent base-rate neglect: An undiagnostic cue value
can elicit unequal preferences. Another celebrated phenom-
enon observed in NMCPL is apparent base-rate neglect
(Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck &
Bower, 1988b; Kruschke, 1996a; Nosofsky, Kruschke, &
McKinley, 1992; Shanks, 1990, 1991a, 1991b). This effect is
observed in experimental designs that have been carefully
constructed such that a particular cue value, V, occurs more
often for a rare outcome, R, than for a common outcome, C,
but the probability of the rare outcome, given the cue value
alone, is the same as the probability of the common
outcome. Formally, p(V|R) > p(V|C), but pR|V) =
p(C|V). The statistics of this experimental design dictate
that a rational learner, when tested with cue value V alone,
should respond equivocally with outcomes R and C. In fact,
there is a strong tendency for people to prefer the rare
outcome R over the common outcome C. This effect has also
been an important challenge for recent models of learning
(Kruschke, 1992, 1996a; Lewandowsky, 1995).

Previous Theories and Models

The various phenomena, outlined above, constitute a
formidable challenge for models of learning. In this section
we review a number of previously proposed models and
describe how all of them fail to account for one or more of
the effects.

Hypothesis-generation model. Castellan and Edgell
(1973) proposed to account for results from NMCPL with
two models that generate hypotheses about which sources of
information lead to correct answers and hypotheses about
which responses are appropriate for the attended-to sources.
In one version of the model, only the base rates and
component dimensions can be attended to. In a second
version, configurations of cues can also be attended to. The
first version, of course, cannot possibly learn to utilize
configural information, whereas people can. The second
version, which can learn configural information, unfortu-
nately makes several incorrect predictions. For example,
Edgell et al. (1996, p. 1466) reported that it predicts no
decrease in utilization of a relevant dimension when irrel-
evant dimensions are added. Edgell and Roe (1995) reported
other shortcomings of the model, regarding ordinally incor-
rect predictions about relative utilization of configural and
dimension information.

Rule-plus-exception model (RULEX). More recently,
Nosofsky, Palmeri, and McKinley (1994) proposed another
model, named RULEX, in which hypotheses (i.e., rules) are
generated. In this model, learning consists of first searching
for perfect single-dimensional rules, then, if no such rules
exist, searching for imperfect single-dimension rules, then,
if no such rules exist, searching for conjunctive rules. If
success is found at any stage, then exceptions to rules are
also added to limited-capacity memory. The initial form of
RULEX was designed for discrete-valued stimuli and deter-
ministic mappings to categories. A later form of RULEX,
described by Nosofsky and Palmeri (1998), applies to
continuous-valued stimuli but was not thoroughly developed
for probabilistic mappings. Thus, it is not clear whether
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RULEX in its current forms can be sensibly applied to
NMCPL. Assuming that some modification could be made
so that RULEX could generate probabilistic responses,
along the lines suggested by Nosofsky and Palmeri (1998), it
remains doubtful that the model would show decreased
utilization of a valid dimension when irrelevant dimensions
are added. Resolution of this matter awaits future develop-
ment of RULEX for application to NMCPL.

Contingency (AP), probabilistic contrast, and Power PC
models. Models of causal induction address how people
infer the extent of causal relationship between candidate
cause ¢ and effect e. Basic contingency theories assert that
causal strength corresponds to the contingency between the
candidate cause and the effect, defined as AP, = P(e |c) —
P(e| ©), where P(e|c) is the observable probability that the
effect occurs given that the cause occurs, and P(e| T) is the
observable probability that the effect occurs given that
the cause does not occur. (Notice that AP equals twice the
validity as defined for NMCPL.) The simplest form of this
scheme is inadequate for addressing situations with mul-
tiple, covarying candidate causes. Cheng and Novick (1990,
1992) introduced an extension of the contingency approach
by arguing that causal strength corresponds to the contin-
gency computed when conditionalized on certain focal sets
of events. In this probabilistic contrast model (PCM), the
causal strength corresponds to AP » = P(e|c, F) — P(e| c,
F), where F denotes the focal set. The theory says that
reasoners prefer focal sets in which plausible alternative
causes are controlled, that is, held constant (either present or
absent). When the PCM is applied to the design shown in
Figure 3, the contingency of the .2-validity cue is the same
regardless of the focal set used to compute it. If utilization is
monotonically related to inferred causal strength, then it is
not clear how the PCM can account for a reduction in
utilization either when the validity of uncorrelated dimen-
sions is increased or when irrelevant dimensions are added.

Cheng (1997) significantly modified this approach by
arguing that the inferred causal power, p., of a candidate
cause, ¢, is related to observable contingencies indirectly via
combined influences with other potential causal powers.
When candidate causal factor ¢ occurs independently of all

0,2 2,2 3,.2
Cue A Cue A Cue A
Val.1 Val.2 Val.1 Val.2 Val.1 Val.2

Val.l [3/10|3/10 1/10(5/10 0/10{6/10
Cue B

Val.2 {7/10(7/10 5/10|9/10

4/10{10/10

Figure 3. The three conditions of Experiment 1. Each table
indicates the distribution of ““category K* feedback for a block of
40 trials. In a]l three conditions, the validity (Val.) of Cue B was .2.
Cue A had validities of .0, .2, and .3 in the three conditions. From
these tables it can also be determined that the base rates were fixed
at .5 across all three conditions, and the configural validity was
fixed at O across all three conditions.
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other candidate causal factors, the Power PC theory predicts
that inferred causal power will be ordinally related to p.r =
[P(e|c, F) — P(e| T, F))/[1 — P(e| T, F)] (cf. Cheng, 1997,
Equation 8, p. 374). This theory significantly enhances the
scope of the contingency approach, but still the theory
appears unable to account for reductions in utilization when
independent, irrelevant cues are added, because this addition
does not affect any of the terms that influence causal power.

Context model. The context model, proposed by Medin
and Schaffer (1978), stores memory traces of stimulus
instances with their categorical labels. When a stimulus is
presented to the model, activation of memory exemplars is
based on their similarity to the stimulus. The probability of a
particular categorical response is based on the summed
activation of all exemplars of that category, relative to the
summed activation of all known exemplars. Edgell et al.
(1996, p. 1466) reported that the context model predicts no
decrease in utilization of a relevant dimension when irrel-
evant dimensions are added, because the relative proportions
of activated exemplars remains the same.

Generalized context model (GCM). Medin and Schaf-
fer’s (1978) context model was generalized by Nosofsky
(1986). The GCM added an assumption that when comput-
ing the similarity of a stimulus to a memory exemplar, the
contribution of each dimension was weighted by the atten-
tion allocated to that dimension, and the attention strengths
were constrained to sum to one. This capacity constraint on
attention suggests that the GCM might be able to account for
competition between cues in some situations. The GCM also
assumed, in lieu of a mechanism for adjusting attention
through learning, that attention is distributed across cues
optimally. In particular, this implies that irrelevant cues
receive zero attention. Hence, the GCM incorrectly predicts
that the addition of irrelevant cues will not decrease the
utilization of a relevant cue.

Rational model. Anderson (1990, chap. 3, 1991) pro-
posed a category learning model in which instances can be
clustered together, and a new instance is classified according
to (a) the probability with which the instance belongs to the
existing clusters and (b) the probability of the classifications
for each cluster. When each cluster contains just one
instance, the rational model reduces to the context model
(Nosofsky, 1991). The rational model is motivated from
normative Bayesian statistics, with implementational con-
straints (hence its appellation). Because the rational model is
able to form clusters of instances, it might be able to address
phenomena that the context mode} cannot. Anderson (1990,
pp- 120-125) applied the rational model to apparent base-
rate neglect and reported that the mode! could not produce
this effect. This discrepancy was dismissed, at the time, by
saying that participants in the Gluck and Bower (1988b)
experiment, who were asked to rate the probability of a
disease given a symptom, were mistakenly replying with
their rating of the symptom given the disease. The effect has
been replicated several times, however, using category
choice instead of probability rating, and so this “irrational”
phenomenon cannot be explained as mere failure of the
participants to follow instructions.
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Component-cue, configural-cue, and ALCOVE connection-
istmodels. The component-cue model of Gluck and Bower
(1988b) is a linear connectionist network that builds associa-
tive weights between input cues and output categories
proportionally to the error between actual and predicted
classifications. The model made a significant impact, be-
cause it was a simple generalization of the Rescorla and
Wagner (1972) model of animal conditioning and because it
accounted for apparent base-rate neglect. Unfortunately, it
has since been shown to fail to account for utilization of an
irrelevant cue (Kruschke, 1996a, Experiment 4), in an
experimental design very similar to the original designs that
demonstrated apparent base-rate neglect. Edgell, Roe, and
Zurada (1993) showed that the model also fails to account
for the detrimental effect of additional irrelevant cues, as
does the configural-cue model of Gluck and Bower (1988a),
in which not only component-cue values but also their
configurations are represented at the input to the network.

The ALCOVE [Attention Learning COVEring] model of
category learning (Kruschke, 1992) adds a connectionist
learning mechanism to the GCM. ALCOVE was originally
thought to exhibit apparent base-rate neglect, but this result
was later shown to be severely restricted to particular
training sequences (Lewandowsky, 1995). Busemeyer,
Myung, and McDaniel (1993b) showed that a large class of
error-driven learning models—including ALCOVE, the com-
ponent-cue, and configural-cue models—will converge, at
asymptote, to the same utilization of a valid dimension
despite differences in the number of irrelevant dimensions.
Thus, these connectionist models also fail to account for at
least some of the “‘irrational”” phenomena compiled above.

Conclusion regarding previous models. Many of these
previous models lack a quality that is assumed by essentially
all theories of cue competition effects, namely, limited
capacity attention. Because irrelevant dimensions are, by
chance, correct on a subset of trials, attention will be
diverted away from valid dimensions to the irrelevant
dimensions, thereby reducing the utilization of the valid
dimensions. This notion of competition for limited atten-
tional capacity also permeates explanations of cue-competi-
tion effects in other paradigms (e.g., Sutherland & Mackin-
tosh, 1971; Trabasso & Bower, 1968). Despite the
pervasiveness of this notion of limited attention, it has not
previously been formalized in a successful model of NMCPL.
Previous models of hypothesis testing can be interpreted as
using rapid shifts of attention, insofar as hypotheses that put
conditions on different dimensions are attending to different
dimensions. When taken to an extreme, the rapid attention
shifts in RASHNL might be interpreted as changes in
hypotheses. Limited-capacity attention, with rapid shifts, is
a central characteristic of the new model we present in this
article.

In addition to incorporating competition for attention,
Edgell et al. (1996) and Edgell et al. (1992) argued that any
successful model will have to incorporate a memory error
mechanism whereby less salient cues are more prone to
errors in memory. It is this memory error mechanism that is
purported to underlie effects of salience on utilization. The
theory suggests that lower salience cues are more prone to
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confusion in short-term memory (STM). Because the values
of the cues in STM have been made more random by errors
of confusion, the effective validity of cues in STM is less
than the physical validity. Because learning operates on the
contents of STM, the less salient cues are utilized less than
the more salient cues. The new model we present in this
article can be interpreted as implementing this notion of
blurred cue values in STM. What mediates the blurring is
similarity-based exemplar representation. The results of our
Experiment 4 suggest a modification to Edgell et al.’s theory,
however.

None of the previous models applied to NMCPL has
explicitly addressed learned nonlearning, that is, the rapid
deceleration of learning over the initial training trials. This
change of learning rate is the third critical principle of the
new model introduced in this article. Although the model we
present is a connectionist model, it does not suffer the same
failures as the other connectionist models reviewed above.

Experiment 1: Effects of Competing-Cue Validity

The primary purpose of this experiment was to generate
data that show a decrease in utilization of a fixed-validity
cue when another dimension’s validity increases. A second-
ary purpose was to show the effect of cue salience on
utilization. These data can then be used for parameter
estimation in RASHNL, which in turn can be used to make
predictions for other situations.

Our stimuli, as shown in Figure 1, were rectangles that
had two possible heights and that contained a small vertical
line segment that had two possible lateral positions. Previ-
ous research in our lab has demonstrated that the lateral
position of the line segment is more salient than the height
of the rectangle (e.g., Erickson & Kruschke, 1998, Appen-
dix C).

Our design included three conditions in which the two
dimensions had various validities. In every condition, one of
the dimensions had a validity of .2. The other dimension had
avalidity of 0, .2, or .3 across the three conditions, which are
therefore referred to as the “.0, .2; “.2, .2 and “.3, .27
conditions, respectively. Figure 3 shows how this design was
realized in terms of frequencies of feedback for particular
stimuli. On the basis of previous results in the literature, we
anticipated finding a reduction in utilization of the .2-
validity dimension as the validity of the other dimension
increased. We also expected to find greater utilization of the
more salient dimension (i.e., the line segment) than of the
less salient dimension (i.e., the rectangle height) when they
had equal validities.

Edgell et al. (1996, Experiment 4) showed that utilization
declined as the validity of a second dimension increased. We
extend their experiment in two modest ways. First, they
tested conditions with dimensional validities of .0, .2; .1, .2;
and .2, .2, so that the validity of the fixed-validity cue was
never exceeded by the other cue, whereas one of our
conditions has validities of .3, .2. Second, they had only a
single assignment of physical cues to abstract dimensions,
wherein the somewhat less salient cue was assigned to the
fixed-validity dimension. We measured utilization when the



PROBABILITY LEARNING

fixed-validity cue was the less salient cue but also when it
was the more salient cue. This manipulation allowed us to
measure an effect of salience on the magnitude of cue
competition.

Method

Participants. A total-of 271 students volunteered for partial
course credit in an introductory psychology class at Indiana
University.

Stimuli and apparatus. Participants were trained individually
in dimly lit, sound-dampened cubicles. They sat before an IBM-
compatible PC at a comfortable viewing distance. They made
responses by pressing the “F” or “J” keys on the standard
computer keyboard.

Stimuli, illustrated in Figure 1, were presented on the computer
monitor. The rectangle width was 98 mm, and its two possible
heights were 32 and 68 mm. The interior line segment had a height
of 15 mm, had alternative positions separated by 35 mm, and
appeared 4 mm above the lower line of the rectangle. The lines
were yellow against a black background.

Design and procedure. The three validity conditions were
described above, as shown in Figure 3. Each participant was trained
for 10 blocks of 40 trials. Trials were randomly permuted within
each block. This number of trials replicates the quantity used in
previous experiments by Edgell and colleagues, who were inter-
ested, in part, in approximately asymptotic utilization.

The assignment of physical stimulus dimensions to abstract cues
was counterbalanced across participants. Thus, rectangle height
could be assigned to Cue A or to Cue B, with line position being
assigned to the other cue. The polarity of each dimensional
assignment was also counterbalanced, so that, for example, if
rectangle height was assigned to Cue A, then Value 1 could be
the tall rectangle (for half the participants) or the short rectan-
gle (for the other half of the participants). The assignment of “F”
and “J” response keys to “K” and “J” categories was also
counterbalanced.

Participants were rotated through the three validity conditions
and 16 stimulus realizations in the presumably random order that
they volunteered for the experiment, spread over many months.
The various conditions of this experiment were conceived of in
several different phases, and some of the conditions were rotated
with other conditions not relevant here. Therefore, the different
conditions had different numbers of participants. Condition .0, .2
had a total of 32 participants with rectangle assigned to the
.2-validity cue and 63 participants with rectangle assigned to the
.0-validity cue. The latter case ended up being just 1 participant
short of a complete counterbalance, because we ran out of
participants at the end of the semester, but, as will be seen below,
the variance across participants is so large that this incomplete
counterbalance should have essentially no influence on the conclu-
sions from the results. Condition .2, .2 had a total of 112
participants. The .3, .2 condition had 32 participants with rectangle
assigned to the .3-validity cue and 32 participants with line
segment assigned to the .3-validity cue.

Instructions were presented on the computer screen. Previous
work with probabilistic category learning indicated that partici-
pants find probabilistic relationships to be very frustrating and
difficult to learn, because of the impossibility of error-free perform-
ance. Therefore, the instructions emphasized that the participant’s
goal was to learn an imperfect tendency of certain outcomes for
certain stimuli and that if the participant tried hard, she or he could
get up to 70 or 80% correct. The instructions mentioned nothing
about either cue being more or less informative than the other. By
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contrast, Busemeyer, Myung, and McDaniel (19933, Footnote 5, p.
194) found it necessary, in their metric cue learning task, to instruct
learners that one of the cues was more effective than the other,
although learners were not told which cue was more effective.
Without this instruction, these researchers observed cue coopera-
tion instead of cue competition. The complete text of our instruc-
tions is provided in Appendix A.

On each trial of training, a stimulus appeared, with a prompt
below it that read, “Is this an F or a J?”” When the participant made
a response, the stimulus stayed on the screen, but the prompt was
replaced with corrective feedback that indicated whether the
response was correct or wrong, and the correct label. Wrong
responses were also followed by a brief tone. The participant could
study the stimulus and feedback for up to 30 s and pressed the space
bar to proceed to the next trial. In addition to trial-by-trial
corrective feedback, the computer displayed the participant’s
percentage correct for the previous block at the end of each block of
40 trials.

Results and Discussion

Figure 4 shows the mean utilizations of each cue as a
function of the experimental condition and block of training.
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Figure 4. Results of Experiment 1. The abscissa is subdivided
into three recurrences of training Blocks 1-10, corresponding to the
three different validity conditions (.0, .2; .2, .2; and .3, .2,
respectively).
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The upper panel shows the conditions for which the fixed
2-validity cue was the high-salience line position. The
lower panel shows the conditions for which the fixed
.2-validity cue was the low-salience rectangle height. The
data for the .2, .2 conditions are the same in the upper and
lower panels, with the roles of “fixed validity cue” and
“other cue” reversed.

One striking aspect of these learning curves is that
utilizations are already at a fairly high level within the first
block of training, and utilizations rise relatively little after
the first three blocks of training. The changes from one block
to the next are slight compared with the variance within
blocks (described below). These data, and informal com-
ments from participants, indicate that people learn whatever
they can in the first few dozen trials and then mostly merely
maintain this pattern of responding. This interpretation is
consistent with the results, summarized earlier, of Edgell
(1983) and Edgell and Morrissey (1987), who found that
when a cue’s validity was increased from zero to a moderate
value after delay, the cue was not utilized as quickly as when
it was valid from the beginning of training.

We are primarily interested in the effect of other-cue

KRUSCHKE AND JOHANSEN

validity on utilization of a fixed-validity cue, and we are also
interested in the effect of cue salience on the utilization of a
cue. We therefore consider the utilization of the .2-validity
cue, when it was either the high-salience line segment
position or the low-salience rectangle height, and when it
was combined with another dimension of .0, .2, or .3
validity. Data from these conditions are plotted with squares
in Figure 4. Each participant’s mean utilization of the
dimensions was collapsed across Blocks 4-10 (as plotted
and discussed in Figure 5). This 2 (salience) X 3 (validity of
other cue) design has the two .2-validity cells using (differ-
ent) data from the same participants, thereby making this a
mixed between- and within-subjects design. For simplicity,
we treated the data as completely between subjects. Hence
the N for analysis purposes was 271 plus 112, which totals
383. The utilization of the fixed-validity dimension did
indeed decrease as the validity of the other dimension
increased, F(2, 377) = 6.43, MSE = 0.111, p = .002. The
utilization of the more salient line segment was much greater
than the utilization of the less salient rectangle height, F(1,
377) = 75.5, MSE = 1.30, p < .001. The greater utilization
of the more salient dimension is also evident within the .2, .2
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condition, #(111) = 5.05, SE = 0.019, p < .001. There was
also an interaction of other-cue validity and salience, F(2,
377) = 3.52, MSE = 0.0607, p = .031, such that the effect of
other-cue validity was due primarily to the high utilization of
the line segment in the .0, .2 condition, which can be seen in
the upper left of Figure 4.

The distributions of utilizations within conditions were
noticeably nonnormal, and so, as a check on the statistical
inferences described above, the data were transformed
various ways in an attempt to better approximate normal
distributions. Various continuous transformations yielded
statistical conclusions the same as those reported above. An
ANOVA was also conducted on the ranks of the utilizations
(Conover & Iman, 1981). With this less powerful analysis,
the two main effects were again highly significant, but the
interaction failed to reach significance, F(2, 377) = 2.22,
MSE = 22,183.8, p = .110.

As an additional check on the statistical conclusions, the
.2, .2 group of 112 participants was split into two random
halves of 56 participants, with each half contributing only to
the low-salience or high-salience condition. Thus, the design
was purely between subjects. An ANOVA showed that the
main effects were highly significant, F(2, 265) = 5.40,
MSE = 0.094, p = .005, and F(1, 265) = 74.3, MSE = 1.29,
p < .001, but the interaction did not reach significance, F(2,
265) = 1.72, MSE = 0.030, p = .182.

Our results qualitatively reproduced those of Edgell et al.
(1996, Experiment 4) for the conditions that we replicated
(shown in Figure 4 as the left and middle partitions of the
upper panel). The interaction of other-cue validity and
salience is a new result, but its statistical reliability is
marginal in the present data, due to the large within-group
variance, described next.

Figure 5 shows the range of individual utilizations for the
conditions in Experiment 1. Each data point represents the
mean cue utilizations by a single participant, collapsed over
Blocks 4-10, that is, the last 280 trials. One striking aspect
of the individual utilizations is their range: Some partici-
pants barely utilized either cue and may as well have had
their eyes closed, whereas other participants virtually maxi-
mized utilization of one cue or the other. Still other
participants split their utilizations across both cues.

The fact that some participants showed nearly zero
utilization of both dimensions might indicate that these
participants were not following instructions and that their
data should be excluded from our analysis. Unfortunately,
no clear criteria exist for determining which data should be
excluded. Edgell et al. (1996) omitted data if they exhibited
long runs of the same response, which might indicate a
participant’s purposeful neglect of learning. For example, in
their Experiment 4, data from 51 of 279 participants were
discarded. There is, however, no clear criterion for how long
a run needs to be for it to indicate neglect, and there is no
method for establishing what other types of patterns do or do
not indicate intentional negligence (Edgell et al., 1996,
Footnote 1, p. 1473). Therefore, to be conservative, we did
not exclude any participants’ data from our analysis. Even if
we did exclude participants who gave long strings of the
same response, and who therefore utilized neither dimen-
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sion, we would retain participants who"did utilize one or
both dimensions, and the large individual differences in our
data would persist.

The individual differences seen in our data reflect those
observed by Trabasso and Bower (1968, chap. 3). In their
concept learning experiments, stimuli had redundant rel-
evant cues, such that both of two cues had a validity of .5.
For example, a triangle with a dot below it would always
indicate one category, whereas a circle with a dot above it
would always indicate the other category. (Conflicting cue
combinations, such as a triangle with a dot above it, or a
circle with a dot below it, never appeared during training.)
The relative saliences of dot position and shape were
assayed by separate experiments, which indicated that dot
position was more salient than shape. Utilizations of the
redundant relevant cues were assessed in a sequence of test
trials during which only one of the cues was presented,
without corrective feedback. Trabasso and Bower (1968,
p- 78) found that 50% of their 89 participants utilized only
the more salient dot-position cue, 35% of the participants
utilized only the less salient shape cue, and the remain-
ing 15% utilized both cues. Thus, the type of individual
differences observed in our experiments are robust and
generalize from probabilistic to deterministic learning
paradigms.

Edgell et al. (1996) also mentioned the occurrence of
large variances of individual utilizations in NMCPL experi-
ments, but no previous reports in the literature have dis-
played the distribution of individual differences. Whereas all
previous work emphasized group mean utilizations, future
work will have to address these large individual differences.

Experiment 2: Effects of Salience

As reviewed above, previous research has shown that
high-salience cues are utilized more than low-salience cues
of the same validity. This phenomenon is known as overshad-
owing in the animal learning literature. Overshadowing was
seen in the .2, .2 condition of Experiment 1, wherein
dimensions of equal validity had unequal utilization, corre-
sponding to their unequal salience. Edgell and colleagues
(Edgell et al.,, 1992, 1996) have also shown that the
utilization of a cue depends on its salience even if the other
cue has zero validity. Experiment 1 replicated this result in
the .0, .2 conditions, wherein the .2-validity line segment
position was utilized much more than the .2-validity rect-
angle height. In both these cases, however, we were
comparing the utilizations of different cues. In Experiment
2, we instead manipulated the salience of a single dimension
while we leave the other dimensional salience constant.

Experiment 2 uses two variations of the .0, .2 condition of
Experiment 1. In both variations, the rectangle height has a
validity of .2, and the line segment has a validity of zero. In
one variation, the difference in height between tall and short
rectangles is smaller, hence less salient, than in Experiment
1. In the second variation, however, the difference in height
between tall and short rectangles is larger, hence more
salient, than in Experiment 1. Previous authors have found
that the magnitude of the difference affects utilization, and
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they have explained this effect in terms of the physical
difference corresponding to a psychological salience (Edgell
etal., 1992; Trabasso & Bower, 1968). We expected to find a
difference in utilization corresponding to the saliences of the
rectangle.

Method

Participants. Students (n = 112) volunteered for partial course
credit in an introductory psychology class at Indiana University.

Stimuli and apparatus. The apparatus was the same as that
used in Experiment 1. The line segment size and positions, and the
rectangle width, were the same as in Experiment 1, but the
rectangle heights were different. In the high-salience condition, the
two possible heights were 23 and 108 mm. In the low-salience
condition, the two possible heights were 53 and 71 mm. The lines
were inadvertently made slightly thicker than in Experiment 1,
approximately 2 mm thick (as opposed to approximately 1 mm
thick in the previous experiment). We presume that this small
change in thickness had negligible effects on the results.

Design and procedure. The procedure was the same as for
Experiment 1. Participants were assigned to the conditions by
simple rotation, in the presumably quasi-random order in which
they arrived at the lab; hence, there were 56 participants per
condition. The assignment of abstract values to physical values was
again fully counterbalanced.

Results and Discussion

Learning curves for the two conditions are shown in
Figure 6. As in Experiment 1, utilization was fairly high
already in the initial blocks of training, with little subsequent
change in Blocks 4-10. Collapsing across Blocks 4-10, the
mean utilizations of the high- and low-salience rectangles
were .110 and .051, respectively. This difference was
statistically significant, #(110) = 2.50, MSE = 0.016,p =
.014. (The difference remained highly significant when the
data were transformed to achieve more normal distribu-
tions.) The distributions of individual utilizations were
qualitatively comparable to the left panels of Figure 5, so
graphical displays are not included here.

In Experiment 1, the mean utilization of the rectangle in
the .0, .2 condition was .065, which lies between the
utilizations observed in Experiment 2. This is appropriate
insofar as the height variation in Experiment 1 was also
intermediate between the high- and low-salience height
variations of Experiment 2.

Experiment 2 has therefore replicated the finding that
utilization of a dimension depends on the magnitude of
variation on that dimension, when it is in the presence of
another dimension of zero validity. Experiment 2 provides
us with further data for quantitative model fitting.

Summary of Results From Experiments 1 and 2

Experiments 1 and 2 replicated and extended previous
results in the literature. The results showed that utilization of
a cue declined as the validity of another cue increased and
that utilization increased as salience increased, both within
and across dimensions. Experiment 1 showed a new result,
that the effect of salience interacted with the effect of
other-cue validity, although the robustness of this interaction
must be treated cautiously in the present data. The resuits
also indicated that learning is very rapid in the initial blocks,
with relatively gradual change thereafter. Finally, the results
indicated a wide variation across participants, with many
participants not utilizing dimensions of positive validity.
With these data at hand, we can now pursue quantitative
model fitting and from the best fitting parameter values
make predictions by the model for the various other
situations outlined in the beginning of this article.

The Model: RASHNL
Principles Implemented by RASHNL

RASHNL is an extension of ALCOVE, which is a
connectionist model that learns to associate input values
with output categories (Kruschke, 1992, 1993b). Mediating
this input—output mapping is a stored representation of
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Figure 6. Results of Experiment 2. The abscissa

is subdivided into two recurrences of Training

Blocks 1-10, corresponding to the two different salience (Sal.) conditions.



PROBABILITY LEARNING

previously presented instances of specific combinations of
stimulus values. ALCOVE is therefore called an exemplar
based model. The stimulus values are represented by their
coordinates in a separately scaled multidimensional psycho-
logical space. A stimulus activates stored exemplars to the
extent that the stimulus is similar to the stored exemplars,
and similarity is computed by differentially weighting the
dimensional differences between each exemplar and the
stimulus. The dimensional weights for computing similarity
are called attention strengths, and they indicate the rel-
evance of the dimension to the categorical distinction being
~ learned. This much of ALCOVE was taken directly from the

GCM of Nosofsky (1986), which was generalized from the
context model of Medin and Schaffer (1978).

The GCM had no mechanism by which the attention
strengths were learned, trial by trial. Instead, they were
estimated directly from the data at a certain moment in
training, or else the asymptotic attention strengths were
predicted to be those values that maximized accuracy.
ALCOVE added a learning algorithm both for the attention
strengths and for the association weights between exemplars
and categories. The learning algorithm was simply gradient
descent on the error generated by the model. Thus, learners,
on average, were assumed gradually to pay attention to the
dimensions that best reduced error, and the same mechanism
also drove changes in associative weights. ALCOVE has fit
a variety of phenomena in human learning (Choi, McDaniel,
& Busemeyer, 1993; Kalish & Kruschke, 1997; Kruschke,
1992, 1993a, 1996b; Nosofsky & Kruschke, 1992; Nosof-
sky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Nosof-
sky et al., 1992; Nosofsky & Palmeri, 1996) but has also
been shown to have limitations (e.g., Busemeyer et al.,
1993b; Erickson & Kruschke, 1998; Kruschke, 1996a;
Lewandowsky, 1995; Macho, 1997).

The original ALCOVE model permitted a capacity limit
on attention, such that increasing attention to one dimension
entailed decreasing attention to another dimension. This
capacity limit was not always imposed, however, because it
was not critical for fitting all data sets. One extension of
ALCOVE introduced in the present article is a systematic
mechanism for limited-capacity attention. In the extended
version, each dimensional attention strength is a function of
another underlying dimensional variable, namely, the ““gain”
applied to the dimension. The attention allocated to a
dimension is the gain on that dimension, normalized relative
to all the other gains. This extension allows the attention
strengths to be adjusted smoothly and continuously.

A second extension to ALCOVE, introduced in this
article, is the assumption that learners make large, rapid
shifts of attention on single trials, before adjusting associa-
tive weights (Kruschke, 1996a). This is contrary to the spirit
of the original ALCOVE model, which assumed, but did not
require, that learners (or the average of groups of learners)
gradually adjusted their attention to dimensions. On the
contrary, rapidity of attention shifts is now posited as a
critical theoretical principle in accounting for human associa-
tive learning. The ADIT [Attention to Distinctive Input]
model (Kruschke, 1996a) incorporated this principle in
accounting for apparent base-rate neglect and the inverse
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base-rate effect (Gluck & Bower, 1988b; Medin & Edelson,
1988). The principle can be formally incorporated into
ALCOVE because of the new formalism for attentional
capacity limitations, mentioned above.

A third extension of the original ALCOVE model is that
all learning rates are assumed to be gradually reduced during
the course of training, for the types of probabilistic map-
pings learned in NMCPL. It is assumed that learners adapt to
a background level of unavoidable error and learn to
discount errors. In lieu of a theory of error discounting, in
this article we merely assume that learning rates decline as
training progresses. All the various learning rates in the
model are assumed to be affected the same way by this
“annealing” process. Currently the annealing follows a
strict, nonadaptive schedule, but future versions will have to
use an adaptive mechanism that adjusts the learning rates or
the error signals in response to environmental contingencies.

Figure 7 illustrates the architecture of RASHNL. Each
stimulus dimension activates an input node, shown at the
lower left of Figure 7. The exemplar nodes are then activated
to the extent that they are similar to the input. The similarity
is computed with attentionally weighted dimensions, and the
attention values are delivered from the attentional network
shown at the right of Figure 7. The exemplar node activation
propagates up to the output nodes, which represent the
various categorical response options. The attentional net-
work on the right of the diagram indicates that attention is a
(normalized) function of underlying gain on each dimension
and that the dimensional gains are themselves learned
associations from context, or bias. The diagram, which is
inherently static, cannot indicate the other two extensions of
ALCOVE, namely, the rapidity of attention shifts and the
annealing of learning rates. ‘

No previous model has simultaneously implemented (a)
rapidly shifting, capacity-limited attention, with (b) graded-
similarity exemplar representation, and (c) annealing of
learning rates. These three principles enable RASHNL to
account for many “‘irrational” phenomena that cannot be
addressed by previous models.

Formal Description of RASHNL

Activation propagation. Stimulus dimensions are as-
sumed to be continuous and interval scaled (a case of which

Figure 7. Architecture of RASHNL (Rapid Attention Shifts ‘N’
Learning). This diagram shows the attention normalization mecha-
nism but does not indicate that attention shifts rapidly on individual
trials or that learning and shift rates are annealed.
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is binary valued), and each dimension is encoded by a
separate input node such that if {; is the psychological scale
value of the stimulus on dimension i, then the activation of
input node i is

@ =, )

where the superscript “in”” denotes that this is an input node.
‘We arbitrarily set the scale values of our binary-valued cues
to 1 and 2. The behavior of the model depends only on the
difference between the scale values, not on their absolute
magnitude. For example, the model behaves the same if we
use scale values of 0 and 1. The relative salience of different
cues is modeled by multiplicative factors on each dimen-
sion, as described below.

There is one exemplar node established for each distinct
training instance. The experiments modeled here involve
just four stimuli, and, for simplicity, all four exemplar nodes
were included in the model from the onset of training, rather
than being recruited trial by trial.

The activation of an exemplar node corresponds to the
psychological similarity of the current stimulus to the
exemplar represented by the node. Similarity drops off
exponentially with distance in psychological space, as
suggested by Shepard (1987), and distance is computed
using a city-block metric for psychologically separable
 dimensions (Gamner, 1974; Shepard, 1964). Each exemplar

node is significantly activated by only a relatively localized
region of input space; that is, it has a small “receptive field.”
Formally, the activation value is given by

, @

ex — _ — Ain
a;" =exp|—c¢ E aio-ill”ji a;
in
i

where the superscript “ex” indicates that this is an exemplar
node, where ¢ is a constant called the specificity that
determines the overall width of the receptive field, where «;
is the attention strength on the i** dimension, where o; is the
salience of the i* dimension, and where §s;; is the scale value
of the j* exemplar on the i dimension.

Increasing the attention strength on a dimension has the
effect of stretching that dimension, so that differences along
the dimension have a larger influence on categorization. This
attentional flexibility is useful for stretching dimensions that
are relevant for distinguishing the categories and shrinking
dimensions that are irrelevant to the category distinction
(Kruschke, 1992, 1993a; Nosofsky, 1986). A dimension’s
attention strength denotes the extent to which differences on
that dimension are relevant for the category problem at hand.
The attention strength does not denote the perceptual
discriminability of the dimension.

Like dimensional attention, the salience of a dimension is
formalized as a multiplicative factor in Equation 2. Unlike
rapidly shifting attention, however, salience is supposed to
refiect the underlying perceptual discriminability or inten-
sity of the stimuli, and salience is considered to be stable
(i.e., unchanging) during the relatively short course of the
experiment. Although Equation 2 includes each dimensional
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salience as a separate factor, the salience is perhaps better
construed as inherent in the psychological scale values of the
stimuli. That is, if a dimension is highly salient, then the
scale values of the stimuli have a large range. We have
parameterized salience as a separate multiplicative factor to
give it an explicit referent for our parameter fits.

The attention allocated to the dimensions is nonnegative
and capacity constrained. This is accomplished formally by
defining dimension i’s attention, o;, to be a function of an
underlying gain, vy;, as follows:

P
m=mmﬂ2mmﬂ, 3)
:

where P is a normalization constant that reflects the atten-
tional capacity of the learner. When P = 1, the dimensional
attention strengths must sum to unity, and any increase of
attention to one dimension comes at the cost of the same
amount of decrease in attention to other dimensions. When
P — oo, there is no trade-off of attention across dimensions,
and all dimensions get full attention all the time. For P > 1
but P < «, there is intermediate attentional competition, so
that increased attention to one dimension causes some
decrease in attention to other dimensions, but not necessarily
as much as the increase. When 0 < P < 1, any increase in
attention to a dimension causes more than that amount of
decrease to other dimensions.

The network implementation of this normalization func-
tion is illustrated at the right of Figure 7 by the layer of fixed
connections between gain nodes and attention nodes. The
gains are initialized at zero for all dimensions and can learn
to become any real value, as explained below. These learned
gain values are suggested in Figure 7 by the connection
weights from the “bias” node to the gain nodes.

Activation from the exemplar nodes is propagated to
category nodes, which correspond to internal representations
of categories. There is one category node per category label.
The activation of the k™ category node is determined by a
linear combination of exemplar-node activations:

cat cat ,ex
o = 2 wia, @
ex
j

where wi}“ is the association weight to category node & from
exemplar node j. The exemplar-to-category association
weights are initialized at zero.

Category node activations are mapped to response prob-
abilities using a version of the Luce (1959) choice rule (i.e.,
the “softmax’’ rule in engineering):

Pr(K) = exp (ba / > exp (¢as), )]
K

where ¢ is a scaling constant. In other words, the probability
of classifying the given stimulus into category K is deter-
mined by the magnitude of category K’s activation relative
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to the sum of all category activations. The constant, &,
determines the decisiveness of the network: A large value of
¢ expresses a highly decisive choice, in that it causes just a
small activation advantage for category K to be translated
into a large choice preference for category K. A small value
of ¢ expresses an indecisive or unconfident network, in that
the small ¢ causes even large activation differences to be
translated into ambivalent choices.

Attention shifts. The dimensional attention strengths are
shifted by gradient descent on sum-squared error, as used in
standard backpropagation (Rumelhart, Hinton, & Williams,
1986). Each presentation of a training exemplar is followed
by feedback indicating the correct response, just as in the
categorization experiments with human participants. The
feedback is coded as teacher values, #, given to each
category node. For a given training exemplar and feedback,
the error generated by the model is defined as

1
E=32 (.~ al, ©)
cat
k

where the teacher values are defined in these simulations as
t, = 1 if the stimulus is a member of category k, and #, = 0 if
the stimulus is not a member of category k.2

On presentation of a training instance, learning progresses
in two steps. First, attention is rapidly shifted to reduce error.
Second, after attention is shifted, the association weights are
adjusted to reduce any remaining error. These two steps are
discussed in turn.

Attentjon is shifted proportionally to the (negative of the)
error gradient with respect to the dimensional gains. Evaluat-
ing the gradient leads to the following formula for Dimen-
sion A’s attention shift:

Ayy= =0 2 2D (e — afwiac

mn ex cat
i i ok

X oy ~ @l |(kuoy — aaf),  (7)

where A, is a nonnegative constant of proportionality called
the shift rate for attention, and k;; = 1 if i = A and is zero
otherwise (x;, is sometimes called the Kronecker delta
function of i and A, but we avoid using the symbol & to avoid
confusion with error terms in the “delta rule” of backpropa-
gation). A derivation of Equation 7 appears in Appendix B.
Psychologically, attention is hypothesized to shift a large
extent on a single trial. This large shift cannot be achieved
formally with a single large step in the direction of the
gradient because attention is a highly nonlinear function of
gain; that is, the gradient changes as the attention changes.
Therefore, the change specified by Equation 7 is iterated 10
times (an arbitrary number) on each trial, so that the
nonlinearity of the function can be approximated with 10
relatively small steps. After each small attention change, the
activation is repropagated to the category nodes to generate
a new error, and attention is changed a small amount again,
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for 10 iterations. The result of these 10 small steps consti-
tutes the single large shift.

Learning of associations. After the attention is shifted,
the association weights are adjusted, also by gradient
descent on error, which yields the following formula for
associative weight changes:

Awg' = NG5 — aas”, ®

where \,, is a nonnegative constant of proportionality called
the learning rate.

The associative weights from the bias node to the gain
nodes are also adjusted via gradient descent on error, where
error is defined as the difference between the shifted value
and the initial, preshift value. That is, the shifted value acts
as the teacher, or target, for the gain nodes. To reduce the
number of free parameters, the learning rate for gain biases
was arbitrarily set to 1.0. In principle, the learning rate for
gain biases should be less than 1.0, so that the model’s
learned attention to dimensions will perseverate in situations
when dimensional relevance shifts, just as humans appear to
do (e.g., Kruschke, 1996b). This is not critical in the current
application, however, because the annealing of learning
rates (described in detail below) quickly makes the effective
learning rate much less than 1.0.

Annealing schedule. The shift rate for gains, and the
learning rates for category association weights and for gain
biases, were all gradually reduced across trials of training, to
reflect the fact that human learners appear also to “turn off”
their learning, or discount errors, in these probabilistic
situations. In the current model, this reduction was achieved
by a commonly used ‘“‘annealing” schedule, whereby the
shift and learning rates were multiplied by a factor, (), that
decreased with training trials, ¢, as follows:

r(t) = 1/(1 + pt), ®

where p is a freely estimated scheduling constant. This
formula for annealing is called a “search then converge”
schedule by Darken and Moody (1991), because the learning
rate stays relatively high until trial 1/p, and then decreases
with training trials, as displayed in Figure 8. Annealing
schedules are discussed further at the end of the article.
Summary of free parameters. In fitting RASHNL to
human learning data of Experiments 1 and 2, there are the
following nine free parameters: the probability mapping
constant ¢ in Equation 5; the exemplar-to-category associa-
tion weight learning rate A, in Equation 8; the exemplar
specificity ¢ in Equation 2; the attention strength shift rate A,
in Equation 7; the attentional capacity P in Equation 3; the
annealing schedule constant p in Equation 9; and three
relative salience values, o; in Equation 2, for the three
different magnitudes of rectangle height variation. For

2 The teacher values used in these simulations were “strict,” not
“humble” like the teacher values used in the original ALCOVE
model (Kruschke, 1992). Strict teachers were used merely for
simplicity, because use of humble teachers made no difference in
the fits.
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simplicity, the relative salience of the line segment position
was arbitrarily fixed at 1.0, regardless of the different
rectangle heights. This simplification might not have been
entirely appropriate, however, because the salience of the
line segment might have depended on the magnitude of
rectangle height variation. Mellers and Biagini (1994)
reviewed several cases in which smaller contrasts on one
dimension produce greater psychological effects for the
other dimension.

Fit of RASHNL to Effects of Competing-Cue Validity
and Salience in Experiments 1 and 2

RASHNL was fit simultaneously to all 140 data points of
the learning curves from both Experiments 1 and 2, shown in
Figures 4 and 6. The best fit yielded a root-mean-square
deviation (RMSD) of .0207 with parameter values as
follows: ¢ = 3.55, A, = 0.152, A, = 48.6,p = 0.337, P =
2.95, ¢ = 10.3, and the saliences of the rectangle variations
relative to the line segment variation equal to 0.783, 0.883,
and 0.894, corresponding in rank to the physical differences.
(The value of the attention shift rate, A, = 48.6, should not
be appraised as untenably large. The error signal that drives
the attention shift is highly attenuated by being backpropa-
gated through the nonlinear exemplar nodes and the normal-
ization function, so, unlike associative weight learning rates
such as A, for linear nodes, the largest sensible learning rate
for A, is not capped at 1.0.) The model accounts for 94.9% of
the variance in the 140 data points, and a plot of predicted
utilizations as a function of actual utilizations appears in
Figure 9.

Figures 10 and 11 show the best fitting utilizations by
RASHNL, for Experiments 1 and 2 (compare with the
empirical results in Figures 4 and 6). The model shows the
major trends in the empirical data: Utilization rises rapidly
in the first three blocks and rises only slowly thereafter;
utilization declines as the validity of the competing dimen-
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Figure 8. Plots of the annealing factor as a function of the
learning trial, corresponding to Equation 9. The annealing factor
remains fairly high until trial 1/tho and then approaches a linear
decline (for log-log scales).
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Figure 9. Best fitting (predicted) utilizations plotted as a function
of actual utilizations, for the 140 data points. The model accounts
for 94.9% of the variance in the data.
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Figure 10. Best fit of RASHNL (Rapid Attention Shifts ‘N’
Learning) to results of Experiment 1 (when also fit simultaneously
to results of Experiment 2). Compare with Figure 4.
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Figure 11. Best fit of RASHNL (Rapid Attention Shifts ‘N’ Learning) to results of Experiment 2
(when also fit simultaneously to results of Experiment 1). Compare with Figure 6. Sal. = salience.

sion increases, and utilization increases with increasing
salience. The model also shows an interaction between
salience and other-cue validity (observed in Experiment 1),
wherein the effect of salience of the .2-validity cue is larger
when the other cue has 0 validity than when the other cue has
.3 validity.

Quantitative deviations from the data are unsystematic
except for Block 1, where the model tends not to utilize the
cues as much as people do, and except for the .2, .2 condition
of Experiment 1, where the model shows a larger effect of
salience than is seen in the data. The high performance by
people in Block 1 is probably attributable in part to their use
of STM for previous trials, a mechanism not implemented in
the model. Previous work in our lab (Kruschke & Bradley,
1995; Kruschke & Erickson, 1995) showed that STM could
account for deviations of delta-rule learning curves from
early trials of human learning. It is plausible that incorporat-
ing an STM mechanism in RASHNL would address the
early-trial deviations seen here. The model’s oversensitivity
to salience in the .2, .2 condition might be ameliorated if an
adaptive annealing schedule were implemented, as opposed
to the fixed annealing schedule used here. An adaptive
annealing schedule would, presumably, create a larger
annealing rate for the .0, .2 and .2, .2 conditions than for the
.2, .3 conditions, because the former are more probabilistic
than the latter. This relative decrease in the annealing rate for
the .2, .3 condition would cause both learning curves in the
.2, .3 condition to rise relative to the other curves, and
compensatory adjustments in the other parameter values
could create a better fit. These speculations await future
testing with specific implementations. In the meantime, the
current fit is informative, and the model is shown in
subsequent sections to predict many other phenomena in
multiple-cue probability learning.

Figure 12 shows the predicted utilizations by individual
participants in Experiment 1 (compare with Figure 5). The
model does not show as much variance as human partici-
pants show; in particular, the model does not show the high
(i.e., nearly .5) utilizations observed in some human partici-

pants. But this limitation is cansed by the fixed scaling
constant in the choice function (Equation 5): The value of ¢
puts an upper bound on the possible utilization exhibited by
the model, because output node activations are taught to be
in the limited range [0, 1].

This problem could be readily addressed by sampling ¢
for each simulated participant from a random distribution, so
that ¢ is large for some participants and small for others.
Increasing or decreasing ¢, while leaving all else constant,
merely increases or decreases the utilization and does not
affect any aspects of learning. With regard to Figure 12, this
sort of randomization of the ¢ values would produce
random, approximately radial shifts of the points, so that
some points would become further from the origin and some
closer to the origin. The psychological interpretation of this
randomization is straightforward: The value of ¢ reflects the
participant’s confidence or decisiveness in converting rela-
tive activations of categories to overt choice preferences. A
large & indicates that the participant is willing to translate a
small relative advantage of one category into a strong choice
preference for that category. It is plausible that not all
participants approach this task with equal “confidence” in
their responses, so that different participants should be
modeled with different ¢ values. At this time, however, we
have no theory to motivate a particular distribution of ¢ over
individuals, and this issue is an avenue for future research.
Other sources of random variation are also plausible: Across
participants, there may be individual differences in the
perceived saliences of the cues. Within participants, there
may be trial-to-trial fluctuations in motivation and overall
attention, which could be formalized as noise in the learning
rates, attention capacity, or specificity.

From another perspective, however, RASHNL shows a
surprisingly large degree of variance, compared with what
one might expect from gradient-descent learning models
generally. Many models that adjust variables by gradient
descent converge to a common asymptotic value regardless
of the random training sequence (Busemeyer et al., 1993b).
Indeed, annealing schedyles are typically designed to encour-
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Figure 12. Utilizations of the two cues by individual simulated participants in RASHNL (Rapid
Attention Shifts ‘N’ Learning) for Experiment 1. Compare with Figure 5.

age rapid convergence to asymptote despite probabilistic
training patterns (e.g., Darken & Moody, 1991). The utiliza-
tions plotted in Figure 12 are averaged over the last 280
trials of training, so they represent fairly stable utilizations,
not transitory states. Particularly remarkable is the fact that
many simulated participants in RASHNL do not utilize
dimensions of nonzero validity, even after hundreds of
training trials, just as seen in human participants. This
selective nonutilization is caused in the model (and presum-
ably in humans) by rapidly shifting attention: On individual
trials, one dimension proves to conflict with recently learned
associations, and so attention is shifted strongly away from
the conflicting dimension to the consistent dimension, where
it tends to stay.

The importance of rapidly shifting attention is highlighted
by examining the best fit of the model when this mechanism
is removed. When the attention shift rate is fixed at zero, the
best fitting RMSD worsens noticeably to .0298 (from
.0206), with parameter values of ¢ = 2.80, A, = 0.430,p =
0.586, P = 3.48, ¢ = 11.9, and saliences of 0.0665, 0.137,
and 0.137 for the three different rectangle height variations
(relative to the line segment salience fixed at 1.0). Without
attention shifts, the model shows very little decline in
utilization of the high-salience .2-validity cue in Experiment
1, with last-block utilizations of .214, .205, and .195 in the
.0,2, 2,2, and .3,.2 conditions, respectively. The no-
attention model also shows an ordinal violation of the data:
For Experiment 1, when the low-salience rectangle height

has validity .3 and the high-salience line position has
validity .2, the no-attention model predicts that the .3-
validity cue is utilized .050 less than the .2-validity cue,
contrary to the data, in which the the .3-validity cue is used
.023 more than the .2-validity cue (see Figure 4). The
difference in the data is not significant, ¢(31) = 0.59, p =
.56, but the difference in the predictions is highly significant,
1(31) = 6.15, p < .0001.

With attentional shifting fixed at zero, the individual
participant utilizations are also too tlghtly clustered, and the
model cannot leamn to selectively ignore a cue. Figure 13
shows the utilizations by individual simulated participants in
the .2, .2 condition of Experiment 1, when the attention shift
rate is fixed at zero. Notice that none of the individual
utilizations for either dimension is at zero, for all 112
simulated participants.

Annealing also plays a critical role in the model’s
behavior. When the annealing rate is fixed at zero, the best
fitting RMSD is poor, at .0449. Without annealing, the
model can still show some of the effects of salience and
other-cue validity because of rapidly shifting attention and
the nonlinear choice function, but the quantitative fit is very
poor because the model tends to converge to a common
asymptote in all conditions. Annealing is crucial for fitting
the data, because it causes the influence of early learning to
be nearly “frozen” into the network.

RASHNL exhibits cue competition because of its rapid
shifts of limited capacity attention. When one dimension is
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Figure 13. Utilizations of the two cues by individual simulated
participants in RASHNL (Rapid Attention Shifts ‘N’ Learning)
with no attention shifts for the .2, .2 condition of Experiment 1.
Compare with the upper middle panel of Figure 12.

more valid than another, attention tends to shift toward the
more valid dimension at the cost of reduced attention to the
less valid dimension. The more that attention is given to a
dimension, the more that the dimension will be learned
about. These attentional shifts have a strong influence on
early learning and could be compensated for by later
learning, were it not for the fact that the early influences are
virtually frozen into the network by annealing of the
learning rates.

RASHNL utilizes higher salience dimensions more than
lower salience dimensions because of the way the two
different values of the cues are represented by the similarity-
based exemplar nodes. Recall that the exemplar nodes have
overlapping receptive fields, so that, for example, the short
rectangle stimulus will partially activate the tall rectangle
exemplar node. When a dimension has low salience, the
exemplar nodes representing the two cue values are greatly
overlapping, so that there is relatively little difference in the
exemplar node activations for the two different cue values.
This poor discrimination of the cue values causes slow
learning about the dimension. Because early learning is
frozen into the network, slow learning implies little learning.

Edgell et al. (1996) and Edgell et al. (1992) suggested that
the effect of salience on utilization was caused by greater
confusion in STM. Lower salience cues are confused more
in STM, producing a lower effective validity of the cue. Of
course, lower validity cues are utilized less. In some
respects, RASHNL implements just such a mechanism. If
the exemplar node activations are conceived of as STM
activations, then lower salience cues are indeed confused
more, insofar as the exemplar node activations are less
discriminating between cue values.

Predictions of RASHNL for Other Situations

In the next few sections of the article, we present
predictions of RASHNL for several different situations. The
goal of these sections is to show RASHNL’s qualitative
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predictions of various effects and interactions, using the
fixed parameter values that best fit the data from Experi-
ments 1 and 2. The aim of the predictions is not quantitative
accuracy, because other experiments that are reported in the
literature and that investigated these other situations, used
somewhat different stimuli, apparatus, instructions, and so
on. The exact levels of utilization in any particular experimen-
tal situation depend critically on the saliences of the
particular stimulus dimensions, the perceptual separability
of the dimensions, the procedural details of training, and so
forth. We assume, however, that the other experiments were
similar enough to ours that the parameter values that best fit
our experiments should produce at least qualitatively correct
predictions for the other situations. Using these fixed
parameter values, we show that RASHNL does indeed make
qualitatively correct predictions for a variety of effects and
interactions reported during two and a half decades of
research by Edgell and colleagues. We also find that
RASHNL makes two novel predictions, regarding an interac-
tion of cue salience with additional irrelevant cues and
regarding an effect of irrelevant-cue salience. These novel
predictions are subsequently confirmed in Experiments 3
and 4.

Dimensional Utilization With Additional
Irrelevant Cues

Castellan (1973) reported that utilization of a partially
valid cue decreased as additional irrelevant cues were added
to the stimulus display. For example, consider the .0, .2
condition of Experiment 1 in which the rectangle height had
a validity of .2 and the line segment position had a validity of
zero. Castellan’s (1973) results suggest that people’s utiliza-
tion of the rectangle height would be larger if the irrelevant
line segment was absent from the display, and people’s
utilization of the rectangle height would be smaller if
another irrelevant cue were added to the display.

Castellan (1973) also reported that the influence of
irrelevant cues interacted with the validity of the primary
cue. Thus, when the primary cue had very high or very low
validity, the additional irrelevant cues had relatively little
effect on utilization. The detrimental effect of additional
irrelevant cues was felt most strongly when the primary cue
had an intermediate validity.

To test the predictions of RASHNL, the model was
trained in conditions such that one dimension had nonzero
validity (either .1, .2, .3, or .4) and was presented either by
itself or with other dimensions of zero validity. For each
condition, 200 simulated participants (random sequences) of
400 trials were generated in blocks of 80 trials that realized
the validities perfectly. The same parameter values that best
fit the results of Experiments 1 and 2 were used in these
simulations, with the salience of each dimension set to 1.0.

Figure 14 shows that RASHNL predicts the empirically
observed effect and interaction. Figure 14 plots the model’s
mean utilization of the nonzero validity dimension in the last
40 trials. The model’s utilization of the relevant dimension
declines when an irrelevant dimension is included, and the
decline is greatest for middling validities. Not shown in the
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Figure 14. Utilization by RASHNL (Rapid Attention Shifts ‘N’
Learning) of a valid dimension as a function of its validity and of
the number of irrelevant (zero-validity) additional cues.

figure is the fact that at near-zero validities the model shows
near-zero utilizations, regardless of the number of dimensions.

RASHNL shows the decline in utilization with the
addition of irmrelevant cues because of competition for
attention. When additional dimensions are added, they
receive some attention at the cost of reduced attention to the
relevant dimension. The model does learn to allocate more
attention to the relevant dimension than to the irrelevant
dimensions but not very strongly, because attending to the
relevant dimension occasionally leads to error and because
the learning and shift rates are annealed. This effect of
additional dimensions is reduced at higher validities because
the higher validities more rapidly drive attention to the
relevant dimension and more rapidly build larger associative
weights to the categories, before annealing “freezes” the
learning.

The absolute levels of utilization by the model are a bit
low for the high-validity conditions, compared with human
utilizations, but this could be corrected by an adaptive
annealing rate, as opposed to the fixed annealing rate
implemented in the displayed simulations. For higher valid-
ity cues, the mapping is less probabilistic, hence the
annealing rate should be less. This lesser annealing allows
greater utilization of the cues. Additional simulations veri-
fied that when the annealing rate is reduced proportionally to
the cue validity, the trends of Figure 14 persist, but the
absolute utilizations increase for higher validity cues.

Two Novel Predictions: Effects of Irrelevant-Cue
Salience

A novel prediction of RASHNL is that the effect of adding
an irrelevant cue should interact with the saliences of the
cues. In other words, the effect of cue salience should
depend on the number of irrelevant cues. Consider, for
example, the effect of salience observed in Experiment 2.
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The large variation, higher salience rectangle had mean
utilization of .110, and the small variation, lower salience
rectangle had mean utilization of .051. These results oc-
curred in the presence of an irrelevant, zero-validity line
segment variation. If the irrelevant line segment is removed,
RASHNL makes the following predictions: First, as shown
above, utilizations of both the higher and lower salience
rectangles should increase. Second, and this is the novel
prediction, the effect of salience should be smaller; that is,
the difference in utilizations between the high- and low-
salience rectangles should be less. Later in the article, after
the collection of effects accumulated by Edgell and col-
leagues has been addressed, Experiment 3 verifies this
prediction, and RASHNL is shown to fit the data well.

A second novel prediction is that the salience of an
irrelevant cue will differentiaily affect the utilization of a
relevant cue. Specifically, when the irrelevant cue is of
relatively high salience, then the relevant cue will be utilized
less than when the irrelevant cue is of relatively low
salience. RASHNL predicts fairly large effects of irrelevant-
cue salience, but Edgell and colleagues (Edgell et al., 1992,
1996) have found only nonsignificant trends in this direction
and have concluded that no such effect exists. Experiment 4
of this article tests and confirms this RASHNL. prediction,
with data well fit by the model.

Base-Rate Utilization With Additional Irrelevant Cues

Outcome base rates fall in the range of 0 to 1, whereas
dimensional validities have values in the range of —.5 to .5.
This is because the outcome base rate expresses the mean
probability of category K, which can only be between 0 and
1, whereas dimensional validities express deviations from
this mean. For example, an outcome base rate of 0.7
indicates that on average across all trials, without regard to
particular cue values, category K occurs 70% of the time.

Edgell and Hennessey (1980) reported that when the
outcome base rate was 0.7, utilization of the base rate
declined as the number of irrelevant cues increased from 1 to
3. This result is analogous to the results of Castellan (1973),
summarized earlier, which showed that utilization of a
relevant dimension decreased as irrelevant dimensions were
added. Edgell and Hennessey (1980) also found that the
decline in base-rate utilization was smaller for more extreme
base rates, analogous to the interaction found by Castellan
(1973) wherein the decline of dimensional utilization was
smaller for more extreme dimensional validities.

Like the dilution of dimensional utilization, the dilution of
base-rate utilization can be captured within the framework
of RASHNL. Just as the dilution of dimensional utilization
was explained by reduced allocation of attention to the
relevant dimension, the dilution of base-rate utilization will
be explained by reduced allocation of attention to a cue that
conveys base-rate information.

What cue conveys base-rate information? Consider classi-
cal studies of base-rate learning (e.g., Estes & Straughan,
1954) in which learners saw nothing at the onset of a trial
except a response prompt, which indicated that it was time to
guess which one of two outcomes would subsequently
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occur. In these studies, the participants were implicitly
instructed that when there was no response prompt, neither
outcome occurred, but participants learned that when there
was a response prompt, Outcome 1 occurred with some
probability and Outcome 2 occurred with the complemen-
tary probability. Thus, when the base rates of the categories
were unequal, the mere occurrence of the response prompt
conveyed information about the probable outcome; that is,
the response prompt was a cue of nonzero validity.

We are presently interested in the utilization of response-
prompt information when irrelevant cues are added to the
response prompt. With this interpretation of the response
prompt as a cue for base rates, the results of Castellan (1973)
imply that utilization of response-prompt information should
be diluted when irrelevant cues are added. Moreover, their
results imply that there should be an interaction such that the
dilution should be weak for highly valid response prompts,
but the dilution should be stronger for middling validity
response prompts. The results of Edgell and Hennessey
(1980) verify both of these implications.

With the inclusion of a dimension to represent the
response prompt, the explanation of the dilution of base-rate
utilization is the same as the explanation for the dilution of
dimensional utilization (recall Figure 14): There is competi-
tion of attentional allocation to the various dimensions,
including the response-prompt dimension, and so utilization
of the response prompt declines as more dimensions are
added.

This notion of the response prompt acting as a cue for
base-rate information is an enhancement of the ADIT model
(Kruschke, 1996a), which was the first model to implement
rapid error-driven shifts of attention. In ADIT, the dilution of
base-rate utilization was caused by a separate response
mechanism. This separate mechanism is jettisoned by
RASHNL, which takes a unified approach to dimensional
and base-rate utilization.

The response prompt was not included in the input
representation for the simulations reported above because
(a) it is needed only for cases when base rates are unequal,
(b) it would demand additional free parameters such as the
salience of the response prompt relative to the other cues,
and (c) it would require specification of several ad hoc
assumptions regarding a variety of properties such as the
initia] weights between values of the response prompt and
the output nodes, or perhaps the learning of no response
during intertrial intervals. These complications do not,
however, change the basic qualitative predictions of the
model, which is based on limited capacity attention allo-
cated to the presented dimensions.

Predictions of RASHNL for Configural Utilization

Recall from the beginning of our article that the configura-
tion of cues is informative when the probability of an
outcome, given a cue combination, cannot be perfectly
predicted by a linear combination of the marginal probabili-
ties of the cues. In other words, the outcome probability is
correlated with the logical XOR of the cue values. In this
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section we explore the predictions of RASHNL for utiliza-
tion of configural information.

Configural Validity Is Utilized Less Than Dimensional
Validity

Edgell (1978) and Edgell and Castellan (1973) found that
configural information was utilized less than dimensional
information, even when the two had equal validities.
RASHNL was tested for its ability to predict this behavior.
As in the human experiments, the model was trained on
stimuli with two cues. The parameter values were the same
as the best fit for Experiments 1 and 2, with both dimen-
sional saliences set to 1.0. Predictions of the model were
determined by the mean utilization of 200 randomly gener-
ated sequences (participants), in the last 40 trials of 400
training trials.

Table 1 shows the predicted utilizations for various
combinations of dimensional and configural validities. The
first and second rows of the table indicate utilizations when
only a dimension has validity or only the configuration has
validity, and it can be seen that configural information is
utilized much less than dimensional information (utiliza-
tions of .127 vs. .169). When dimensional validity and
configural validity are simultaneously present, as reported in
the third row of the table, the configural utilization is again
less than the dimensional utilization (.102 vs. .165). Thus,
the model makes qualitative predictions that match human
results.

The model’s lesser utilization of configural information is
understandable in terms of limited-capacity attention: Con-
figural information requires partial attention to both dimen-
sions, but dimensional information requires attention to only
one dimension. When attention is distributed over dimen-
sions, the overlapping receptive fields are closer together,
causing more interference and slower learning. When dimen-
sional and configural information are simultaneously pres-
ent, the informative dimension attracts attention, at the cost
of reducing attention to the uninformative dimension, and
hence additional interference with configural information.

Dimensional Salience and Configural Utilization

Edgell (1993, pp. 52-53) reported that when two dimen-
sions have very different saliences, then the use of the
low-salience dimension can be as low as the utilization of

Table 1
Predicted Utilization of Dimensional and Configural
Information by RASHNL

Validity Utilization
CueA CueB Config. CueA CueB Config.
2 0 0 .169 0 0
0 0 2 0 0 127
2 0 2 165 0 102
Note. RASHNL = Rapid Attention Shifts ‘N’ Leaming; Config. =

configural information.
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configural information. In an experiment conducted with
Pak Ng, the researchers compared three conditions: Utiliza-
tion of a high-salience cue of .2 validity, utilization of a
low-salience cue with .2 validity, and utilization of the
.2-validity configuration of the high- and low-salience cues.
They found that the low-salience dimension was utilized “at
about the same level as the configural information.”

RASHNL qualitatively reproduces this result. Using the
same parameter values as the best fit to Experiments 1 and 2,
we let one dimension have a salience of 1.1 and the other
dimension have a salience of 0.9. Again we ran each
condition with 200 randomly generated sequences of 400
trials, and we computed the mean utilization for the last 40
trials. When the high-salience dimension had a validity of .2,
its mean utilization by RASHNL was .267. When the
low-salience dimension had a validity of .2, its mean
utilization was .071. Finally, when the configuration had a
validity of .2, its mean utilization was .068, essentially the
same as the utilization of the low-salience dimension.

Interaction of Component and Configural Utilization

A number of studies by Edgell and collaborators have
investigated the interaction of dimensional and configural
validity when the valid dimension either is or is not one of
the dimensions in the valid configuration. For example,
Edgell (1980, Experiment 2, Condition 3, and Experiment 3,
Condition 3) examined utilization of information in three-
dimensional stimuli. In one condition, the first dimension
had validity .2, and the configuration of the first and second
dimension had validity .3. In another condition, the first
dimension again had validity .2, but the configuration of the
second and third dimensions had validity .3. In other words,
in the first condition the relevant configuration inciuded the
relevant dimension, but in the second condition the relevant
configuration involved different dimensions. Edgell found
that configural utilization dropped significantly from the first
condition to the second; that is, when the configural
information no longer overlapped with the dimensional
information, the configural utilization dropped.

Although Edgell (1980) did not discuss salience, it is
important to note that the first dimension in these studies was
the orientation of stripes. Subsequent work by Edgell et al.
(1992) showed that stripe orientation is much more salient
than the other dimensions. To reflect this salience difference,
our simulations set the salience of the first dimension to 1.2
and the saliences of the second and third dimensions to 0.9.

RASHNL predicts the following results: When the first
dimension has validity .2 and the configuration of first and
second dimensions has validity .3, then the utilization of the
first dimension is .281 and the utilization of the configura-
tion is .090. When the first dimension has validity .2 and the
configuration of second and third dimensions has validity .3,
then the utilization of the first dimension is .222 and the
utilization of the configuration is .034. That is, the utilization
of the configural information decreases (from .090 to .034)
under these conditions, which is qualitatively the same result
seen in human participants by Edgell (1980).

Edgell and Roe (1995) examined interactions of compo-
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nent and configural utilization when the cue saliences were
approximately equal. In their Experiments 1 and 2, they
measured utilization of configural information when it
occurred by itself, when it occurred with a third dimension
also having validity, and when it occurred with one of its
own dimensions having validity. As found in previous
studies, the magnitude of configural utilization was much
less than the magnitude of dimensional utilization. The level
of configural utilization depended, however, on whether or
not the valid dimension was a component of the valid
configuration. Configural utilization was higher when the
valid dimension was a component of the configuration.
Dimensional utilization was not significantly different when
the valid dimension was part of the configuration or not.
Overall, then, there was competition between dimensional
and configural utilization, with the effects of competition
manifested predominantly in the configural utilization.

When RASHNL is applied to this situation, the model
also shows competition between dimensional and configural
utilization, as should be expected from its limited-capacity
attention. However, in the model the competition is mani-
fested in the dimensional utilization, such that the configural
utilizations remain at approximately the same low level,
while the dimensional utilization is larger when the valid
dimension is one of the configural dimensions than when it
is a separate dimension. This prediction, however, depends
on using the parameter values that best fit our data. If the
model is instead fit directly to the data from Experiments 1
and 2 of Edgell and Roe (1995), an extremely accurate fit
can be obtained with different parameter values. What
appears to be most important for fitting their data is an
attentional capacity value that is less than unity; that is, in
Equation 3, P < 1. When P < 1, full attention can be given
to any single dimension, but if attention must be distributed
over N dimensions, each dimension gets an attentional
strength that is less than 1/N. Because of this penalty for
attending to multiple dimensions, configural utilization
suffers more in the attentional competition than does dimen-
sional utilization. As of yet we have no theory to explain or
predict the value of the attentional capacity P, but presum-
ably its value could be influenced by a variety of factors such
as the motivation of the learner, the perceptual integrality of
the cues, the ease of processing each cue individually, the
number of cues, the instructions given to the participants,
and so on. In any case, the theoretical principles, formalized
by the model, remain tenable.

Predictions of RASHNL for Delayed
Introduction of Cue Validity

Edgell (1983, Experiment 1) showed that when configural
information was introduced into training after a delay during
which dimensional information was already present, the
configural information was utilized much less than when it
was introduced at the beginning of training. Edgell com-
pared one condition, in which the first dimension had a
validity of .2 and the configuration of the first and second
dimensions had validity of .2 throughout 400 trials of
training, with another condition, in which the configural
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validity of .2 was introduced only after 120 trials with zero
configural validity. His results showed that the utilization of
the configural information was much less in the delayed
group than in the from-the-start group, even at the end of 400
trials. Edgell (1983, Experiment 2) and Edgell and Morris-
sey (1987, Experiment 1), showed that when the configural
information was introduced at various trials (20, 40, 80, 120,
and 200), utilization-of the configural information rose to
roughly the same level in all the delayed groups but never to
as high a level as the from-the-start group.

RASHNL qualitatively reproduces these results. Using
the same parameter values as before, RASHNL learns
configural information much better when it is introduced
from the start than when it is introduced later. Table 2 shows
the utilizations predicted by RASHNL as a function of the
number of trials in the delay (for 200 simulated participants,
in the last block of 40 trals out of 400 training trials).
RASHNL shows a large reduction in utilization after just a
20-trial delay, and the reduction after that is relatively small
and gradual.

In RASHNL, this drop in learning is caused by annealing.
The “‘search then converge” annealing schedule causes the
model to be sensitive to information that is present during
the early “‘search’ phase, but the schedule causes the model
to be relatively insensitive to information present only
during the later “converge” phase. The learning rate in this
annealing schedule never drops all the way to zero, but it
does get close to zero quickly after the first few trials (see
Figure 8).

This fixed annealing schedule is, as mentioned before,
merely a proxy for a truly adaptive learning rate to be
explored in future research. A fixed annealing schedule
might be appropriate for a stationary environment, in which
the probabilities of contingencies never change. In contrast,
for a ponstationary environment such as delayed introduc-
tion of information, the learning rates should adaptively
respond to changes in contingencies. Presumably such an
adaptive mechanism would track the consistency of errors
being made and the extent to which learning can reduce the
errors. If errors cannot be reduced with learning, then they
should be discounted. On the other hand, if errors are
effectively reduced with learning, then the learning rates
should increase. Possible formalisms for such adaptive
leamning rates are discussed later.

Edgell and Morrissey (1987, Experiment 2) showed that
when dimensional information was introduced after a delay,

Table 2
Predicted Utilization of Configural Information Introduced
After a Delay

Delay (trials) Utilization
0 .100
20 057
40 043
80 .034
120 023
200 .016
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it was learned more slowly than when the same information
was introduced from the start. By the end of 400 training
trials, however, utilization rose to almost the same level as
dimensional information introduced from the start. In their
study, the relevant dimension was more salient than the
irrelevant dimension, and the configuration of dimensions
had a constant validity of .2. RASHNL reproduces the
slower leamning of delayed dimensional information but
does not utilize the dimensional information to the same
extent at the end of 400 trials of training. When the
dimensional information is introduced from the start, the
utilization in the last block is .254. When the dimensional
information is introduced after 40 trials, the utilization in the
last block is .150. (These results are for saliences of 1.1 and
0.9 for the relevant and irrelevant dimensions, respectively.)
This partial success and partial failure of RASHNL is again
attributable to the fixed annealing schedule. The annealing
causes learning rates to decline, so that information intro-
duced after a delay is learned more slowly than information
introduced at the start. But the fixed annealing schedule
causes the learning rates to remain small, even after the
contingencies have changed, so that new information is
learned too slowly. A more complete model would use
adaptive learning rates, rather than a fixed annealing sched-
ule. This is described at greater length in the General
Discussion.

On the other hand, Edgell and Morrissey (1987, Experi-
ment 3) showed that when dimensional information was
introduced after a delay, it was not necessarily utilized as
much as when it was introduced from the start, even at the
end of 400 trials. In their Experiment 3, rather than the
configuration having constant validity as in their Experiment
2, the low-salience dimension had constant validity of .2,
while the high-salience dimension had validity changing
from .0 to .2 after a delay. RASHNL does qualitatively
reproduce their results: When introduced from the start, the
high-salience dimension is utilized to a level of .244 at the
end of 400 trials, whereas after an 80-trial delay, it is utilized
only to a level of .120.

In summary, these simulations of delayed introduction of
information have both positive and negative implications for
the model. On the positive side, the simulation results
demonstrate that the annealing mechanism is important to
the model for addressing the slower learning of information
introduced after a delay. On the negative side, the simulation
results demonstrate the (perhaps obvious) point that a fixed
annealing schedule is inappropriate for a nonstationary
environment. Adaptive annealing schedules for nonstation-
ary regimes are an unsettled topic in the stochastic optimiza-
tion literature and have been only rarely applied in experi-
mental psychology. This is potentially a rich domain for
future research and is discussed more below.

Experiment 3: Interaction of Additional
Irrelevant Dimensions and Salience

As discussed in a previous section, a prediction of
RASHNL is that the deleterious effect of adding an irrel-
evant dimension should be stronger when the relevant
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dimension is of low salience than when it is of high salience.
‘We now report results of an experiment that confirmed this
prediction. In this experiment, an irrelevant cue of intermedi-
ate salience was added to a relevant cue that had either high
or low salience. When the relevant cue had high salience,
then the addition of a moderate-salience irrelevant cue was
predicted to have only a small deleterious effect on the
utilization of the relevant cue. When the relevant cue was of
low salience, however, then the addition of a moderate-
salience irrelevant cue was predicted to have a large effect
on the utilization of the relevant cue.

Method

Participants. A total of 193 students from introductory psychol-
ogy courses at Indiana University volunteered for partial course
credit.

Design. For every participant, there was one relevant dimen-
sion of .2 validity. The relevant dimension could be of high or low
salience. The relevant dimension could appear by itself or could be
accompanied by an additional, irrelevant (.0 validity) dimension of
intermediate salience. Thus, the experiment comprised a 2 X 2
between-subjects factorial design, crossing relevant-dimension
salience (high or low) with number of irrelevant dimensions (zero
or one). As in Experiments 1 and 2, training consisted of 10 blocks
of 40 trials. Each block exactly realized the dimensional validities.

Procedure. The apparatus and procedure were the same as
Experiments 1 and 2, except that no feedback was provided at the
end of blocks that indicated the percentage correct. Participants
were rotated through the conditions in the presumably quasi-
random order in which they signed up for participation, which
resulted in 48 participants in every condition except the high-
salience relevant, no-irrelevant condition, which ended up with 49
participants.

Stimuli. The stimuli were words of high, moderate, or low
salience, as determined by norms of concreteness, imagability,
familiarity, and memorability. The selection of these stimuli was
motivated by the need for strong control over stimulus salience that
was demanded by this experiment. In previous attempts to generate
the predicted interaction, we manipulated the height variation and
segment variation of the geometric stimuli from Experiments 1 and
2. In two experiments, we found trends toward interactions as
predicted, but the trends failed to reach statistical significance
because the effect size was small. Power analyses indicated that
hundreds of participants would need to contribute to each condition
to make the power acceptably large. Instead of attempting to
increase the effect size by further titrations of the relative variations
of rectangle height and segment position, we changed to stimuli
with better established saliences, namely, words.

In the long history of memory and learning experiments in which
words were used as stimuli, it has been found that words of higher
concreteness, imagability, and familiarity are usually easier to
remember and associate (e.g., Christian, Bickley, Tarka, & Clayton,
1978). Because of such influences on word memorability, research-
ers have established normed values for hundreds of words on a
variety of characteristic scales. We consulted the Medical Research
Council (MRC) Psycholinguistic Database (Coltheart, 1981; avail-
able on-line at http://wapsy.psy.uwa.edu.au/uwa_mzc.htm) to ob-
tain words of very high, average, or very low salience. As
representative of high-salience words, we selected “boy” and
“cat.” These words have familiarity, concreteness, and imagability
scores (respectively) of 1.19, 1.43, 1.56, and 0.95, 1.48, 1.55 SDs
above the mean. As representative of moderate-salience words, we
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selected “peek” and “toll,” which have values *+0.3 SDs of the
mean on all three scales. For the low-salience words, we selected
“nabob” and “witan,” which have values on all three scales of
more than 1.3 SDs below the mean. Thus, the alternative values of
the high-salience dimension were “boy” and “cat”; the alternative
values of the intermediate-salience dimension were “peek” and
“toll”’; and the alternative values of the low-salience dimension
were “nabob” and “witan.” In conditions when two words were
presented on the same trial, they were shown one above the other,
with their order randomly permuted.

As an additional, convergent manipulation of salience, the
high-norm words were presented in all upper-case letters flanked
by asterisks, the moderate-norm words were presented with initial
capitals, and the lJow-norm words were presented in ali lower-case
letters. Instructions emphasized that, as an aid to learning, partici-
pants should try to imagine the referent of the word as they were
learning. The complete text of the instructions is provided in
Appendix A.

Associative learning experiments recently conducted (but as yet
unpublished) in our laboratory showed that these words did indeed
vary significantly, and consistently, in their ease of associating with
deterministic categorical labels. Thus, we were encouraged that
strong effects of salience would also appear in NMCPL. Moreover,
these experiments would provide additional data regarding the
generalizability of classic effects in NMCPL, originally explored
using nonverbal stimuli.

The concept of stimulus salience does not yet have a conven-
tional operationalization. Informally, a stimulus is salient to the
extent that it is easy to encode or process, easy to distinguish from
other stimuli in the same context, and easy to associate with
outcomes. Words such as “boy” and “cat” satisfy these informal
criteria, insofar as these words are highly practiced, have easily
visualized referents, are semantically very rich and distinct from
each other, and are easily associated with other words. Words such
as “nabob” and “witan,” on the other hand, might be distinctive
and hence salient insofar as they are unusual, but because most
people do not know what these words mean, the words are not as
easy to encode, they do not evoke strong images, they are not
semantically distinct from each other, and, for whatever reasons,
they are not as easily associated with other words. Thus, our choice
of stimuli specifically emphasized salience gua distinguishability
and associability. ‘

Results and Discussion

Results are shown in the top panel of Figure 15. Visual
inspection clearly suggests that the RASHNL predictions
were confirmed: When an irrelevant attribute of intermediate
salience is added to the relevant attribute, the reduction in
utilization of the relevant attribute is much greater for the
low-salience relevant attribute than for the high-salience
relevant attribute.

Statistical analysis verifies the reliability of these conclu-
sions: Because the mean learning curves changed relatively
little after Block 3 of training, we computed each partici-
pant’s mean utilization of the relevant dimension, collapsing
across Blocks 4 through 10. The distributions of utilizations
were noticeably nonnormal, so all scores were converted to
ranks (Conover & Iman, 1981). Even after this conversion,
the lowest utilization group had notably smaller variance
than the other groups, so the ranked data were analyzed
using tests that did not pool variances. Despite these
conservative steps, which typically reduce the power of the
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Figure 15. Upper graph: results of Experiment 3. Lower graph: best fit of RASHNL (Rapid
Attention Shifts ‘N’ Learning), fit simultaneously to the results of Experiment 4. The abscissa is
subdivided into two recurrences of Training Blocks 1-10, corresponding to the irrelevant dimension
being absent or present. Within the right panels of each graph, the two curves marked with “+”
symbols indicate the utilizations of the two cues when the relevant dimension (Dim.) had high
salience; the curve near zero is for the irrelevant cue, and the higher curve is for the relevant cue. The
two curves marked with square symbols indicate the utilizations of the two cues when the relevant
dimension had low salience. Again, the curve near zero is for the irrelevant cue, and the higher curve

is for the relevant cue.

tests, there was a significant interaction contrast, #(189) =
208, SSE = 15.70, p = .039, for adjusted df = 179.7,
indicating that the effect of adding an irrelevant dimension
was significantly different depending on the salience of the
relevant dimension. This interaction was due largely to the
small utilization of the low-salience relevant dimension in
the presence of the intermediate-salience irrelevant dimen-
sion. Thus, the simple effect of salience, when the irrelevant
dimension was present, was significant, #(94) = 2.71, SSE =
10.19, p = .008, for adjusted df = 91.5, and the simple effect
of adding an irrelevant dimension, for the low-salience
relevant dimension, was also significant, #(94) = 3.18,
SSE = 11.22, p = .002, for adjusted df = 85.7. There was no
significant simple effect of adding an irrelevant dimension to
the high-salience relevant dimension, #(95) = 0.27, SSE =
11.00. When no irrelevant dimension was present, the
unexpectedly higher utilization of the lower salience dimen-
sion can be discounted, as there was nowherc near a

significant difference between mean utilizations of the high-
and low-salience dimensions in the absence of an irrelevant
dimension, $(95) = 0.43, SSE = 11.95. The trend toward a
difference is mitigated further when considering the ranks
themselves (as opposed to the raw utilizations plotted in
Figure 15): The mean rank of the low-salience utilization
was 109.2, SD = 63.0, and the mean rank of the high-
salience utilization was nearly the same, at 104.1, SD =
54.3. All these conclusions are the same if “raw’ utilizations
are used instead of their rank-transformed values.

Other aspects of the data echo the results of Experiments 1
and 2. The learning curves are already at a fairly high level
within Block 1 of training and rise relatively little after
Block 3 of training. Within each condition, there is large
between-subject variation in utilization of the relevant
dimension. Scatterplots of individual utilizations are not
included here, because they appear much like those shown in
the leftmost panels of Figure 5.
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Experiment 4: Salience of an
Irrelevant Cue Affects Utilization

As discussed in a previous section, a second novel
prediction of RASHNL is that the deleterious effect of
adding an irrelevant dimension should be stronger when the
irrelevant dimension is of high salience than when it is of
low salience. This prediction directly conflicts with conclu-
sions reached by Edgell (Edgell et al., 1992, p. 587; Edgell et
al., 1996, p. 1477), who found trends but no significant effect
of the salience of irrelevant cues. We now report results of an
experiment that confirmed this prediction. In this experi-
ment, an irrelevant cue of either high or low salience was
added to a relevant cue that had moderate salience. The
utilization of the moderate-salience cue was predicted to be
higher when the irrelevant cue had low salience than when
the irrelevant cue had high salience.

Method

Participants.  Atotal of 137 students from introductory psychol-
ogy courses at Indiana University volunteered for partial course
credit.

Design. There was one relevant dimension of .2 validity, with
moderate salience. It was accompanied by an additional, irrelevant
dimension (.0 validity) of either high or low salience. Thus, the
experiment comprised two conditions. As in Experiments 1, 2, and
3, training consisted of 10 blocks of 40 trials. Each block exactly
realized the dimensional validities.

Procedure. The apparatus and procedure were the same as in
Experiment 3. The instructions were identical to those of Experi-
ment 3, and the full text is reported in Appendix A. Participants
were rotated through the two conditions in the presumably
quasi-random order in which they signed up for participation (i.e.,
every other participant was assigned to the low-salience condition),
which resulted in 68 participants in the low-salience condition and
69 in the high-salience condition.

Stimuli. The stimuli were the same as in Experiment 3, that is,
words of high, moderate, or low salience, as determined by
published norms of concreteness, imagability, familiarity, and
memorability.

Results and Discussion

Results are shown in the top panel of Figure 16. Visual
inspection clearly suggests that the RASHNL predictions
were confirmed: When the irrelevant attribute has high
salience, the utilization of the relevant cue is less than when
the irrelevant attribute has low salience.

Statistical analysis verifies the reliability of these conclu-
sions: Because the mean learning curves changed relatively
little after Block 3 of training, we computed each partici-
pant’s mean utilization of the relevant dimension, collapsing
across Blocks 4 through 10. The distributions of utilizations
were noticeably skewed, so all scores were converted to
ranks (Conover & Iman, 1981). The mean rank utilization
for the high-salience irrelevant dimension was significantly
less than the mean rank utilization for the low-salience
irrelevant dimension, 1(135) = 2.32, SE = 6.68, p = .022.
This conclusion is the same if “raw’ utilizations are used
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instead of their rank-transformed values, #(135) = 2.77,
SE = 0.022, p = .006, for unequal-variance adjusted df =
123.2.

Other aspects of the data echo the results of our previous
experiments. The learning curves are already at a fairly high
level within Block 1 of training and rise relatively little after
Block 3 of training. Within each condition, there is large
between-subject variation in utilization of the relevant
dimension. Scatterplots of individual utilizations are not
included here, because they appear much like those shown in
the leftmost panels of Figure S.

Why did we observe an effect of the salience of an
irrelevant dimension, when Edgell and colleagues did not?
We believe it is simply a matter of statistical power. Edgell et
al. did find some trends in their data consistent with our
results, but the trends did not reach statistical significance.
Recall that there is extremely large variance among partici-
pants in these experiments, so that statistical detection of
differences in mean utilization demands both a large sample
size and as large an effect size as possible. The stimuli we
used (i.e., words of very different concreteness, memorabil-
ity, and visual impact) were intended to be of extremely
different salience, thereby generating, we hoped, a relatively
large effect size. Despite these efforts, our data indicate an
effect size of only 0.37. It is possible that the geometric
stimuli used by Edgell et al. did not have salience differences
as large.

Implication for Theory of Cue Confusion in STM

Edgell et al. (1992, 1996) argued that salience affects
utilization by means of the memorability of cues in STM,
and not via competition for attention. According to their
memory hypothesis, a low-salience cue suffers more confu-
sions in STM, and hence its effective validity is lower than
its actual validity. Edgell et al. (1996) stated:

Note that assuming memory errors are random and unbiased,
they cannot change the perceived validity of an irrelevant cue
dimension, because the association will still be 50/50. Hence,
different physical representations of the irrelevant dimension
would not have an effect on the utilization of the relevant
dimension if the memory error hypothesis is correct, because
the perceived validity of the irrelevant dimension would not
change. However, if the alternative conspicuousness hypoth-
esis is correct, then a more salient physical representation of
the irrelevant dimension would draw more attention from the
relevant dimension, causing it to be less utilized, than would a
less salient physical representation of the irrelevant dimen-
sion. (p. 1475)

Our present findings therefore appear to disconfirm the
memory hypothesis, at least in the form hypothesized by
Edgell et al. (1996). RASHNL is not entirely inconsistent
with the general idea of salience influencing effective
validity in STM, however. What RASHNL adds to the
memory hypothesis is the notion that salience competes for
attention before cues are encoded in STM. Therefore, the
salience of an irrelevant dimension does not necessarily alter
its effective validity in STM, but the salience does alter the
encoding of competing, relevant dimensions in STM.
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Figure 16. Upper graph: results of Experiment 4. Lower graph: best fit of RASHNL (Rapid
Attention Shifts ‘N’ Learning), fit simultaneously to the results of Experiment 3. Within each graph,
the two curves marked with “+” symbols indicate utilizations of the two cues when the irrelevant
(Irrel.) cue had high salience; the curve near zero utilization is for the irrelevant cue, and the higher
curve is for the relevant cue. The curves marked with square symbols indicate utilizations of the two
cues when the irrelevant cue had low salience. Again, the curve near zero utilization is for the
irrelevant cue, and the higher curve is for the relevant cue.

Fit of RASHNL to Results of Experiments 3 and 4

The results confirmed the qualitative predictions of
RASHNL, when using the parameter values that best fit
results from Experiments 1 and 2, which used geometric
figures as stimuli. As a further test of the model, it was
quantitatively fit simultaneously to the results of Experi-
ments 3 and 4, which include the 100 data points plotted in
the upper panels of Figures 15 and 16. The model was
trained on the same sequences seen by the 330 participants.
The best fitting predictions are shown in the lower panels of
Figure 15 and 16, where it can be seen that the fit is
excellent. The minimized RMSD is .018, with parameter
values of = 291, \, = 0208, A, = 45.7,p = 0483, P =
6.24, ¢ = 8.86, and saliences of 0.866, 1.00 (fixed), and 1.20
for the three different levels of salience. These parameter
values are similar in magnitude to those that best fit the data
from Experiments 1 and 2.

When there were two dimensions present, RASHNL
tended to shift most of its attention to the more salient
dimension, whether or not that dimension was valid. Thus,
when the irrelevant dimension had higher salience than the
valid dimension, the valid dimension was not utilized very
strongly because it did not garner much attention. When the
irrelevant dimension had lesser salience than the valid
dimension, the valid dimension was utilized almost as well
as when there was no irrelevant dimension, because the
irrelevant dimension did not very strongly detract from the
relevant dimension. )

To reiterate our predictive logic, the parameter values
from Experiments 1 and 2 were used to make qualitative
predictions for the situations of Experiments 3 and 4 (and a
number of other situations reported above). We assumed that
the different stimuli used in these various experiments were
dissimilar enough to demand different exact parameter
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values for best quantitative fits by RASHNL but that the
different experiments’ stimuli were similar enough that the
various best fitting parameter values should yield the same
qualitative predictions. The qualitative predictions derived
from the best fit to Experiments 1 and 2 were confirmed by
our new results in Experiments 3 and 4. The model was then
more stringently checked for its ability to quantitatively fit
these new data, allowing different parameter values for these
different stimuli. The fit was excellent. New parameter
values were justified for this quantitative fit because of the
stimulus differences, which could engender different sa-
liences, different attentional capacity demands, different
attentional separabilities, and so forth. The logic used here
might be compared with the logic of predictions from, say,
Newton’s theory of gravity: The theory predicts that two
objects on any planet should fall qualitatively in the same
way (e.g., with the same acceleration). But quantitative
predictions from the theory depend on planet-specific param-
eter estimates (e.g., a prediction of the magnitude of
acceleration depends on an estimate of the planet’s mass).

Utilization of Irrelevant Cues
and Apparent Base-Rate Neglect

In all the cases we have considered so far, the cues were
uncorrelated. That is, each combination of cues occurred
equally often. The literature on probabilistic category learn-
ing has also recently highlighted cases of correlated cues,
such that different combinations of cues occur with different
frequencies. We now apply RASHNL in this situation.

Gluck and Bower (1988b) reported one case in which the
cues were correlated and also the two categories had
different base rates. The main point of their often-cited
results was that for a particular cue, the true probability of
the rare disease, given that cue alone, was 50%, but human
participants chose the rare disease significantly more often
than 50% of the time. This phenomenon has been dubbed
“apparent base-rate neglect,” because it might be the result
of insufficient weighting of category base rates in classifica-
tion. Gluck and Bower (1988b) explained the effect in a
different way, as the consequence of error-driven learning of
associative weights between cues and categories, formalized
in their component-cue model.

Kruschke (1996a) argued that apparent base-rate neglect
is actually caused by the additional influence of rapid,
error-driven attention shifts between cues and not solely by
error-driven associative weights. The model proposed by
Gluck and Bower (1988b) had no.such attention shifts.
Experiment 4 of Kruschke (1996a) was a variation of Gluck
and Bower’s (1988b) design, in which apparent base-rate
neglect was observed, but which could not be adequately fit
by the component-cue model. Kruschke (1996a) showed
that an extended version of the component-cue model, called
ADIT, that incorporated rapid shifts of attention fit the data
much better. Thus, the component-cue model was initially
believed to account for base-rate neglect but was subse-
quently shown not to generalize to situations with different
conditional probabilities. Rapid attention shifting was added
to the model to account for the effects. RASHNL's predeces-
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sor, ALCOVE, was also initially believed to account for
base-rate neglect (Kruschke, 1992; Nosofsky et al., 1992)
but was subsequently shown not to generalize to different
training sequences (Lewandowsky, 1995). Therefore it is
appropriate to examine whether the addition of rapid atten-
tion shifting to ALCOVE, in the form of RASHNL, can
account for the results of Experiment 4 of Kruschke (1996a).

Participants in the experiment saw, on each trial, a list of
three symptoms, and the learner had to diagnose the case as
one of two possible diseases. The three symptoms occurred
in mutually exclusive pairs, thereby abstractly structured as
three binary-valued dimensions. For example, symptom
dimension A (sA) might have one value (sA = 1) of “‘hair
loss” and an alternative value (sA = 2) of “stomach cramps.”
Symptom dimension B (sB) might have one value (sB = 1)
of “blurred vision” and an alternative value (sB = 2) of
“swollen tonsils.” Thus, nothing in the symptom words
themselves indicated dimensional membership. These stimuli
were designed specifically to obscure the mutual exclusivity
of the alternative values, so that learners would not use
meta-associative strategies such as the reasoning, if Value 1
of sA indicates one disease, then Value 2 of sA must indicate
the other disease. Thus, the six symptoms are best repre-
sented psychologically as six separate attributes, rather than
as three binary dimensions. Across the 200 training trials,
the common disease occurred 75% of the time, whereas the
rare disease occurred 25% of the time.

The conditional probabilities of the symptoms, given the
diseases, are shown in Table 3. Two aspects are important to
point out. First, the conditional probabilities were designed
so that when given sB = 2 alone, or sC = 2 alone, the
probability of the rare disease is exactly 50%. If people
choose the rare disease more than the common disease in
these cases, then we have apparent base-rate neglect.
Second, the first symptom, sA, is not correlated with the
diseases, so, from a normative perspective, its value should
have no influence on people’s diagnoses. Table 4 shows the
normative probabilities of the common disease for all
possible symptom combinations.

After training, participants were shown test cases that
included 27 symptom combinations, generated by crossing
each of the symptoms’ alternative values, or the absence of
either value. In particular, one case was the pull case, in
which no symptoms were present. Other cases included only

Table 3
Conditional Probabilities of Symptoms Given Diseases for
Experiment 4 Reported by Kruschke (1996a)

Disease
Symptom
value Common Rare
SA =2 8667 .8667
sA=1 1333 1333
sB =2 .2000 .6000
sB=1 .8000 4000
sC=2 1333 4000
sC=1 .8667 .6000

Note. sA =2 indicates Value 2 of symptom dimension A, sA = 1
indicates Value 1 of symptom dimension A, and so on.
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Table 4

Proportion of Choices for the Common Disease for All 27
Cases From the Test Phase of the Experiment With
Correlated Cues by Kruschke (1996a)

Symptom Source of choice proportion
sA sB sC Normm Human RASHNL ECCM
Null case

0 750 .768 835 747
One-symptom cases

0 0 1 812 .923 921 .823
0 0 2 .500 415 377 454
0 1 0 .857 .894 918 .870
0 2 0 .500 324 338 .385
1 0 0 .750 606 644 710
2 0 0 750 .859 .818 717
Two-symptom cases
0 1 1 .897 923 .962 .937
0 1 2 667 582 .652 .690
0 2 1 591 648 618 554
0 2 2 .250 218 235 253
1 0 1 812 .843 773 .823
1 0 2 .500 486 453 513
1 1 0 .857 796 .753 .865
1 2 0 .500 345 449 463
2 0 1 .812 .859 .932 .842
2 0 2 .500 577 509 490
2 1 0 857 929 .930 .883
2 2 0 .500 592 446 432
Three-symptom cases
1 i 1 .897 852 .824 929
1 1 2 .667 567 589 722
1 2 1 .591 486 579 618
1 2 2 250 .333 416 335
2 1 1 897 915 975 947
2 1 2 .667 754 723 726
2 2 1 591 .669 .687 .611
2 2 2 .250 296 355 293

Note. sA heads the value of symptom dimension A, and so forth.
A symptom value of O indicates that the symptom was absent.
Norm = normative probability; Human = human choice propor-
tions; RASHNL = predictions of Rapid Attention Shifts ‘N’
Learning; ECCM = enhanced component-cue model.

one symptom. For all these cases, participants were in-
structed to make their best guess based on what they had
learned before.

Results from the test cases are shown in Table 4. For the
null case, people guessed the common disease just slightly
more often than the true base rate. For the single-symptom
cases, people exhibited apparent base-rate neglect, choosing
the common disease significantly less than 50% for sB = 2
and for sC = 2.

The single-symptom cases also clearly reveal that the first
symptom was utilized by participants despite its normative
irrelevance; thus, the preference for the common disease is
much lower when sA = 1 than when sA = 2. This utilization
of the irrelevant first symptom can also be observed in the
training cases (i.e., the three-symptom cases at the bottom of
Table 4). By considering the mean proportion of common
choices when sA = 2, subtracted from the mean proportion
of common choices when sA = 1 (i.e., the mean of the last
four rows of Table 4 minus the mean of the immediately
preceding four rows), we produce an indicator of utilization
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of the first symptom. For the normative probabilities, this
difference is, of course, zero. For the human data, the
difference is +0.099. This utilization of the first symptom
was also strongly present throughout training, not just in
testing.

RASHNL was fit to the data by being trained on the same
71 distinct sequences as the human participants saw. The six
symptoms were represented by six input nodes, with values
of 0 or 1 for absent or present symptoms, respectively. The
best fitting predictions of RASHNL are shown in Table 4.
RASHNL successfully shows preference for the common
disease when no symptoms are present (i.e., for the null
case), yet at the same time it also shows apparent base-rate
neglect for both one-symptom cases (sC = 2 and sB = 2).
RASHNL also successfully shows robust utilization of the
irrelevant first symptom. This utilization can be seen for the
single-symptom cases, where p(C|sA=1) = .644 but
p(C|sA = 2) = .818. The utilization of the irrelevant first
symptom can also be seen for the three-symptom (training)
cases: The mean choice proportion when sA = 2 subtracted
from the mean choice proportion when sA = 1 is 0.083.

Further inspection of Table 4 reveals a few cases for
which the fit by RASHNL is noticeably imperfect; the
minimized RMSD was .0586, for parameter values of ¢ =
4.69, \,, = 0.661, A, = 52.0,p = 0.443, P = 29.9,¢c = 9.89,
and saliences fixed at 1.0. Qualitatively, however, the fit is
good enough to lend some support to the model, especially
when (a) contrasted with the notably poorer fit, RMSD =
.0810, by an enhanced component-cue model (ECCM),
described below, and (b) compared with the less-than-
perfect best fit yet achieved by any model, RMSD = .0435,
for ADIT (Kruschke, 1996a).

RASHNL successfully utilizes the irrelevant symptom
because of rapidly shifting attention. During training, the
three most frequently occurring cases, accounting for 80%
of the training trials, have sA = 2, with the correct response
being the common disease for 79% of these cases. There-
fore, early in training, Value 2 of symptom sA becomes
associated with the common disease. Moreover, of the rare
cases, 87% also have sA = 2. Therefore, when a case of the
rare disease occurs, it will typically contain Value 2 of
symptom sA, and because this symptom is already associ-
ated with the common disease, attention will shift away from
this symptom in order to reduce error. Thus, Value 2 of
symptom SA remains associated with the common disease,
resulting in significant utilization despite its normative
irrelevance.

The performance of RASHNL can be contrasted with the
best fit of ECCM, described by Kruschke (1996a). The
ECCM has the original component cue model of Gluck and
Bower (1988b) as a special case when certain parameters are
fixed at zero, so if the enhanced model does not fit the data,
neither does the original component cue model. The enhance-
ments included the base-rate bias mechanism used by ADIT,
the choice probability mapping function used by ADIT and
RASHNL, and the feature-expectancy learning mechanism
proposed by Shanks (1992). The best fitting predictions of
this model] are also shown in Table 4, which yield RMSD =
.0810. The ECCM exhibits apparent base-rate neglect when
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sC = 2 and when sB = 2, but it fails to show any utilization
of the first symptom. This failure is evident by examining the
one symptom cases, where the ECCM predicts that
p(C|sA = 1) = .710 and p(C|sA = 2) = .717, a negligible
difference. The failure to utilize the first symptom is also
shown for the three-symptom training cases: The mean
choice proportion for sA = 2 subtracted from the mean
choice proportion_for sA = 1 is 0.099 for humans but
—0.007 for ECCM.

The fit of RASHNL to these data reveals the important
fact that RASHNL robustly exhibits apparent base-rate
neglect, despite the fact that its predecessor, ALCOVE, did
not. The fit to these data also demonstrates that RASHNL
utilizes a normatively irrelevant dimension, just as humans
do, whereas ECCM did not.

General Discussion
Summary

We have shown that a wide variety of effects observed in
multiple-cue probability learning can be accounted for by a
model, named RASHNL, that implements three basic prin-
ciples: rapid, error-driven shifting of limited-capacity atten-
tion; similarity-based exemplar representation; and anneal-
ing of learning and shift rates.

The various mechanisms of RASHNL work together and
simultaneously and are not invoked separately to account for
different effects. However, because each explanatory prin-
ciple is parametrically formalized, its influence on the
behavior of the model can be assessed. This correspondence
of explanatory principles with formal mechanisms gives
RASHNL clear explanatory power, and, despite its use of
connectionist formalisms, the model does not suffer from the
explanatory opacity ascribed to some connectionist models
(McCloskey, 1991). In these other connectionist models, it is
sometimes unclear how generic, low-level computational
principles produce specific high-level behaviors.

Our approach to demonstrating the model’s abilities was
to fit RASHNL to data from two new experiments that
partially replicated and modestly extended previous experi-
ments in the literature and then to use the best fitting
parameter values for making qualitative predictions of
RASHNL for other situations previously reported in the
literature. These predictions were qualitative (not quantita-
tive), because the other situations used different stimuli,
procedures, and apparatus, which could affect the specific
dimensional saliences, attentional capacity, learning rates,
and so forth. The other situations were similar enough,
however, that we presumed that they could be qualitatively
modeled with the parameter values that best fit Experiments
1 and 2. Thus, RASHNL not only explains the data that we
fit directly but also predicts other effects. Moreover, we
presented two new predictions—that the effect of salience
should interact with the number of irrelevant cues, and the
salience of an irrelevant cue should affect utilization—and
we confirmed the predictions empirically in Experiments 3
and 4. As an additional test of the model, we examined its
ability to quantitatively fit these new data, using freely
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estimated parameter values to accommodate the different
stimuli; the resulting fit was very good. Finally, we also
showed that RASHNL utilizes an irrelevant cue and exhibits
apparent base-rate neglect, just as human learners did in
Experiment 4 of Kruschke (1996a). Accounting for all these
phenomena has been very difficult for other models.

In the remainder of the article we discuss possible
mechanisms for adaptive learning rates, cases of cue compe-
tition observed for metric cues, and prospects for a theory of
learning that spans multiple species. Finally, we recapitulate
the rationality of rapid attentional shifts.

Annealing and Adaptive Learning Rates

Annealing of learning and of attentional shifts has been
essential to our account. We think of annealing as an
adaptive response to unreliable, inconsistent error signals.
That is, if, on successive exposures to a stimulus, the correct
response varies from trial to trial, then the error should be
discounted, because it is unreliable. This discounting of
error implies that whatever is learned early, before learning
rates are much reduced, remains relatively “frozen” into
place.

We used a fixed annealing schedule for NMCPL experi-
ments with stationary probabilities. Fixed annealing sched-
ules are not appropriate for nonstationary environments such
as experiments with delayed introduction of information.
The real world also presents frequently changing contexts
and contingencies, which people continue to learn about. To
address these nonstationary environments, there is needed
some sort of adaptive learning rate or adaptive discounting
of error.

Ashby, Alfonso-Reese, Turken, and Waldron (1988, Ap-
pendix 1), also used a fixed annealing schedule in their
COVIS [competition between verbal and implicit systems]
model of category learning, but these researchers had to
modify the annealing depending on the structure of the task
and the performance of the model. In particular, the anneal-
ing was applied only to probabilistic structures, not to
deterministic structures, and the annealing schedule was
reset if performance by the model was too poor. These
manipulations of the annealing schedule again suggest the
need for an adaptive learning rate or adaptive discounting of
€ITOor.

Previous research on adaptive learning rates includes
work by Sutton and his collaborators and successors (e.g.,
Fang & Sejnowski, 1990; Gluck, Glauthier, & Sutton, 1992;
Jacobs, 1988; Nosofsky et al., 1994; Sutton, 1992). The
fundamental idea of this approach is that learning rates
should be adjusted to reduce error. This idea is expressed
mathematically as gradient descent on error with respect to
the learning rates, just as learning of associative weights is

~ governed by gradient descent on error with respect to the

associative weights.

The basic formula for adjusting learning rates by gradient
descent on error is easy to derive. Suppose that at time (or
trial) T we are interested in adjusting the learning rate A(7)
for a variable w(x). This variable, w, could be an associative
weight, or an attention strength, or any other variable in the
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model that is adjusted by learning. Suppose moreover that
the variable is learned by gradient descent on error, E(1),
which in turn is some function, f, of the variable w(7):
E(7) = f(w(7)). Learning of w by gradient descent on error E
means that

dFE
w(m = w(r=1) = M) - (=1), (10)

where the learning rate A is indexed by T instead of by 7 — 1
to indicate that the learning rate A is updated before the
variable w is updated. Equation 10 indicates that w(7) is a
function of A(7) and implies that

ow(T) B EE ) )
MNT) T aw =1 an

We then compute the change in the leaming rate as follows:
AN oF
(1) =—ex (0

af (w(1))
aN(T)

of (w(7)) ow(7)
aw(t) OA(T)

3 dE OE
= €6w () P (r—1, (12)

where € is a constant of proportionality, that is, a meta-
learning rate for the learning rate. Equation 12 indicates that
the learning rate A for w is increased if the changes in w are
of the same sign from one trial to the next, but the learning
rate \ is decreased if the changes in w are of opposite signs
on successive trials. Equation 12 is called the “delta-delta”
rule (Jacobs, 1988).

The delta-delta rule suffers some difficulties in practical
applications, as described by Jacobs (1988). Variations and
extensions have been developed by a number of researchers,
including Fang and Sejnowski (1990), Jacobs (1988), and
Sutton (1992). All these variations retain the basic theme
that learning rates should increase if changes are consistent
from trial to trial (as can occur in a deterministic situation),
but learning rates should decrease if changes are inconsistent
from trial to trial (as occurs in probabilistic situations).
Different approaches to parameter adjustment have been
described by Almeida et al. (1998), Darken and Moody
(1992), and Sompolinsky et al. (1995), among many other
investigators in this active field of research.

Instead of approaching learned nonlearning with adaptive
learning rates, an alternative approach is adaptive discount-
ing of error. We are not aware of any previous publications
in which this approach is taken. The central idea of this
novel approach is that the learner can differentially attend to
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different sources of error, just as the learner can differen-
tially attend to different cues. In this scheme, the learner can
shift attention away from unreliable sources of error, just as
the learner can shift attention away from unreliable cues. At
the time of this writing, we have not yet given this approach
a thorough formal treatment, and we leave the idea as a
plausible possibility.

There is yet a third possibility for how a learner might
handle unreliable error signals. Rather than merely reducing
the learning rate for error-driven changes, or reducing
attention to error, the error signal could be transformed into a
more reliable signal. For example, the learner might trans-
form inconsistent trial-by-trial teacher signals into consis-
tent, long-run-average teacher signals. This transformation
to long-run averages is inefficient, because it takes multiple
trials to compute and is only as reliable as the sample size
(number of trials) over which the average is computed. Such
a transformation is also computationally costly, because it
needs to be conditionalized on stimulus cues and cue
combinations. Attentional capacity constraints and shifts
could limit which of these conditional means are computed;
hence, this approach does not eliminate the role of atten-
tional shifts. Determining all of the conditional mean teacher
signals is tantamount to learning the mapping from cues to
outcomes, and so it is really no solution to the learning
problem, unless there are actually two learning problems:
one for determining the conditional mean teacher signals,
and one for inferring what underlying mapping generated
these signals. If a learner took this approach to handling
unreliable teacher signals, then he or she could show
“maximizing” instead of probability matching, because the
learner could infer a deterministic underlying mapping from
cues to outcomes that generates a stable long-run-average
teacher. These speculations await exploration in future
research.

Metric Cue Probability Learning

The NMCPL framework uses discrete cues and discrete
outcomes, but cue competition effects are also observed in
situations with continuously valued metric cues and out-
comes. RASHNL is equipped to deal with metric cues but is
not currently formulated to address metric outcomes. Even
for discrete outcomes, RASHNL cannot fully address ex-
trapolation beyond the domain of the trained values (Delosh,
Busemeyer, & McDaniel, 1997; Erickson & Kruschke,
1998). Future models that address situations with metric
cues and outcomes would presumably also incorporate the
three essential principles of RASHNL. In this section we
briefly review two such situations of cue competition
observed for metric cues, one case with discrete outcomes,
the other case with metric outcomes.

Metric cues and discrete outcomes. In an experimental
paradigm called the randomization technique, Ashby et al.
(1998) used metric cues that predicted discrete, categorical
outcomes. In this paradigm, the cue values for an instance of
a category are drawn from a multivariate normal probability
distribution; that is, the probability of a cue value, given a
category, is normally distributed. Ashby et al. reported an
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experiment in which the stimuli consisted of two metric cues
(physically realized as line segments that varied in length
and orientation). Both cues were normally distributed within
each of two categories, with equal variances and zero
covariances. On the first dimension, the two category means
were separated by 0.74 SDs, and on the second dimension
the category means were separated by 1.18 SDs.

For our purposes it is important to notice that the cue with
the greater separation between category means is the more
valid cue. To understand this, consider a case in which the
two categories have the same mean on the first dimension.
Because the marginal probability distributions on this dimen-
sion are identical for the two categories, this cue has zero
validity. At the opposite extreme, consider a case in which
two categories have an extremely large separation between
their means on this dimension. Because in this case there is
virtually no overlap between categories, this cue has very
high validity. Thus, in the category structure used by Ashby
et al. (1998), the second dimension, with category means
separated by 1.18 SDs, was more valid than the first
dimension, which had category means separated by 0.74
SDs.

Ashby et al. (1998) found that after 2,000 trials of
training, people did not utilize the dimensions proportionally

to their validities. Instead, people underutilized the less valid
dimension relative to the more valid dimension. (Ashby et
al. did not measure validity and utilization as described here,
in the context of NMCPL. Instead, they reported the slope of
the best fitting linear discriminant between the two catego-
ries. This slope is directly related to the relative validities or
utilizations of the two categories.)

Ashby et al. (1998) interpreted this result in the context of
their multiple-system theory of categorization, named
COVIS, to stand for competition between verbal and
implicit systems. Verbal rules in this model are formalized as
thresholds on single dimensions; for example, the stimulus
is in Category K if its value on Dimension A exceeds
threshold Value V. In COVIS, even if the implicit system
accurately learns the relative validities of the dimensions,
the verbal system will tend toward a rule on the more valid
dimension. When the results of the two systems are mixed,
there will be a bias toward the more valid dimension, away
from the less valid dimension, thereby accounting for the
result.

Alternatively, the result can be construed simply as a case
of overshadowing of a less valid cue by a more valid cue. In
the competition for attention to dimensions, the more valid
dimension tends to attract more attention, at the expense of
reduced attention to the less valid dimension. Rapid shifts of
attention, as posited by RASHNL, might also account for the
dynamics of learning observed by Ashby et al. (1998). They
reported that early in training, participants would utilize just
one dimension, then just the other dimension, switching
back and forth, but converging to stable utilizations later in
training.

It would be straightforward to apply RASHNL to this
case, but it would also be well beyond the intended scope of
this article, which focuses on the NMCPL paradigm. We
leave it to future research to explore simulations of RASHNL
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applied to the numerous experiments in the literature that
have used the randomization technique.

Metric cues and metric outcomes. A clear example of
cue competition among metric cues with metric outcomes
was reported by Busemeyer et al. (1993a). Participants in
their experiment learned to predict the height of a plant that
was given various amounts of two growth hormones. The
correct height was generated by a linear combination of the
two hormone quantities plus normally distributed noise. A
critical design feature was that the hormone quantities were
uncorrelated across trials, so that the marginal validity of
each cue was unaffected by the validity of the other cue.
Busemeyer et al. (1993a) held constant the validity of one
cue but set the validity of the second cue to a lower level in
one condition and to a higher level in another condition.
Utilization of the fixed-validity cue was significantly de-
creased when the other cue had higher validity.

In summary, not only is cue competition observed in
situations with discrete cues and outcomes, but it has also
been documented in situations with continuously varying
metric cues and outcomes. Presumably, the same psychologi-
cal principles are at work in all these situations, and future
formalizations of the principles will address continuous
metric cues and outcomes.

Comparison Across Species

We began this article by noting that cue competition is a
ubiquitous phenomenon, exhibited not only by humans in a
variety of situations but also by nonhuman animals, even
honeybees. This commonality of behavior suggests that
similar principles of learning may be involved across
species, even if the specific biological mechanisms that
implement the principles are quite different. In addition to
the commonalities across species, obviously there are also
many differences in the cognitive abilities of different
species. In the interest of constructing a unified theory of
learning, it is tempting to contemplate whether a single
model (which formalizes a specific set of principles at the
algorithmic, not implementational, level) can address behav-
ior of various species by merely changing parameter values
for different species. In particular, a variety of species might
all learn with attention shifts, but different species might
have different rates of attention shift and different rates of
learning the shifts.

Previous researchers have contemplated this unified ap-
proach. Trabasso and Bower (1968) cautioned that

a more critical question is whether one should even attempt to
construct a theory that is proposed to be valid for animals and
men except for variations in the parameters. Though an
attractive strategy, it may simply be unrealistic to expect even
moderate success along these lines. (p. 223)

Undeterred, Mackintosh (1969) compared probability learn-
ing among rats, birds, and fish and concluded that

the simplest explanation, therefore, of the behavioural differ-
ences between rat, bird and fish, is to suggest that the three
classes of animal differ in the extent to which they can learn to
attend to a given cue when it is not consistently correlated
with reinforcement. (pp. 148-149)
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Recent work by Kruschke (1997a) shows that the model of
attentional learning in animals proposed by Mackintosh
(1975) is (very nearly) a special case of the model attentional
learning in humans proposed by Kruschke (1996a). The fact
that models motivated by different species turn out to be
closely related adds encouragement to those who seek a
unified theory of learning.

Rapid Attention Shifts Are Rational

This article also began with the assertion that it would
seem rational or optimal to learn about partial correlations
between cues and outcomes as they actually exist in the
world, but instead it is the case that humans and other
animals exhibit nonnormative utilization of cues. Have all
these species thrived despite having irrational, suboptimal
learning? Have the selective pressures of all these species’
evolutionary niches been so benign that inaccurate learning
goes unpunished in reproductive success? We believe the
answer to these questions is “no.” Instead, the learning
behavior of these species is an evolutionarily adaptive
solution to a constraint on learning other than long-run
accuracy: the need for speed. By this we mean the need to
learn a new association in as few exposures as possible,
without destroying previously acquired associations. An
organism that learns quickly would probably possess a
reproductive advantage over competitors that learn less
quickly.

Rapid, error-driven shifting of attention is a method to
achieve the goal of speedy learning. This is because
error-driven shifts of attention are tantamount to reduction of
interference between different associations, and reduction of
interference allows faster acquisition of new associations
without destroying old associations (Kruschke, 1997a,
1997b). Shifts of attention reduce interference, because
attention is shifted away from cues that cause error toward
cues that reduce error. Which cues cause error? Those cues
that are already associated with a response different from the
one presently demanded. By shifting attention away from
the cues previously associated with different outcomes,
those associations are preserved and protected from overwrit-
ing. Which cues reduce error? Those that are already
associated with the response presently demanded. By shift-
ing attention to these cues already associated with the
desired response, learning is speeded and redundant cues are
reserved for future use.

The need for speedy learning is probably a constraint
imposed on numerous species, and it may be the case that
numerous species have evolved forms of rapidly shifting
selective attention to address this need. Whereas the specific
biological implementations of attention shifting may differ
across species, the behaviors might have a functional common-
ality that can be captured in a single algorithmic formaliza-
tion. Moreover, the behaviors that result from rapid attention
shifts, such as overshadowing, are rational and nearly
optimal with respect to the constraint of efficiency.
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Conclusion

We conclude with a recapitulation of the main points. At
the empirical level, Experiments 1 and 2 replicated previous
results in the literature but also provided new details not
previously reported, including extensive individual differ-
ences in utilization, and an interaction of salience and
validity. New predictions of RASHNL, regarding competi-
tive effects of the salience of an irrelevant cue, were verified
by Experiments 3 and 4.

At the theoretical level, we have argued that the critical
psychological mechanisms, needed to explain the panoply of
effects addressed here, include rapidly shifting attention and
annealed (or better yet, adaptive) learning rates. No previous
model has been able to account for the range of effects
addressed here, and no previous model has implemented
these explanatory principles.

At the meta-theoretical level, the article suggests that the
apparently irrational, nonnormative behaviors, shown by
humans and other animals, are in fact natural consequences
of highly adaptive solutions to the problem of fast learning.
Many species presumably share the need to learn in as few
trials as possible, without overwriting previously learned
knowledge. Rapidly shifting attention is a functional solu-
tion to this need for rapid interference reduction.
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Appendix A

Full Text of Instructions to Participants

The following instructions were presented on the participants’
computer screens at the beginning of the experiments.

Instructions for Experiment 1

This experiment investigates how people learn to classify and
categorize objects. You will be shown a series of rectangles with a
line segment in each. The height of the rectangle and the position of
the line segment may change from one presentation to the next.

Each combination of rectangle and line segment is labeled with a
letter. Your job is to learn to predict the correct label for each
combination of rectangle with line segment. After a rectangle and
line segment appear, you should type in what you think is the
correct label.

The rectangle and line are only probabilisticaily related to the
label. Thus a given picture might only usually be an ‘F’ instead of
always being an ‘F’. So even though you can’t always be correct, it
is still possible to get up to 70 or 80 percent correct if you try hard.
You should try to respond as accurately as possible.

The correct response will be shown after you make your
response so you can evaluate your performance.

[Press the space bar to continue]

Periodically during the experiment, you will be given a short
break and shown how well you have done over the last block of
trials.

Please place all personal belongings out of the way, under the
desk. Please do.not listen to music or take notes during the
experiment since it could affect the outcome.

You should try to respond as accurately as possible. Please do not
leave until the computer says that the experiment is over.

[Press the space bar to continue]

Throughout the experiment, when you see a rectangle and line
displayed, respond by pressing the key that corresponds to what
you think is the correct label. At first, you’ll just be guessing what
letter to choose. There are, however, only two choices: the letter F
and the letter J.

Remember because this is a probabilistic task, you should be
able to get up to 70 or 80 percent correct.

Make sure you know where the F and J keys are.

[Press the space bar to continue]

If you have any questions, ask the experimenter now.

WAIT for the experimenter to close the curtain and leave the
room.

[Press SPACE BAR to BEGIN the Experiment]

Instructions for Experiment 2

This experiment investigates how people learn to classify and
categorize things. You will be shown a series of rectangles that vary
in height. In addition you might be shown a vertical line segment
inside of the rectangle that varies in position.

Your job is to learn to predict the correct label for each rectangle
or combination of rectangle with line segment. When the stimulus
is displayed, you should type in what you think is the correct label.
The possible labels are ‘F’ and ‘).

A given stimulus is only probabilistically related to a label. Thus,
a given stimulus might only usually be an ‘F’ instead of always
being an ‘F’. So even though you can’t always be correct, it is still
possible to get up to 70 percent correct if you try hard. You should
try to respond as accurately as possible.

The correct response will be shown after you make your
response so you can evaluate your performance.

[Press the space bar to continue]

Periodically during the experiment, you will be given a short
break and shown how well you have done over the last block of
trials.

Please place all personal belongings out of the way, under the
desk. Please do not listen to music or take notes during the
experiment since it could affect the outcome.

You should try to respond as accurately as possible. Please do not
leave until the computer says that the experiment is over.

[Press the space bar to continue]

Throughout the experiment, respond by pressing the key that
corresponds to what you think is the correct answer. At first, you’ll
just be guessing what letter to choose.

After a while, you’ll learn which stimuli tend to go with which
labels. Remember that because this is a probabilistic task, you
should be able to get up to 70 percent correct.

Make sure you know where the F and J keys are.

[Press the space bar to continue]

If you have any questions, ask the experimenter now. WAIT for
the experimenter to close the curtain and leave the room.

[Press SPACE BAR to BEGIN the Experiment]

Instructions for Experiments 3 and 4

This experiment examines how people learn to make accurate
medical diagnoses. You will be presented with many patients’ case
histories. For each case history you will be shown the symptoms
the patient has, and you will be asked to choose which illness you
think the patient has. After you make your diagnosis, you will be
told the correct diagnosis. All you have to do is try to learn which
symptoms tend to go with which illnesses so that you can make as
many correct diagnoses as possible.

Re-read the previous paragraph if it is unclear. Then, press the
space bar to continue.

There are two possible diseases that the patients have, and each
patient has one and only one of the diseases. In order to keep things
as straight-forward as possible, we’ll simply label the diseases with
letters F and J. For each case history, you indicate your diagnosis by
pressing one of these two letters on the keyboard. You’ll have up to
30 seconds to make your diagnosis for each case history. At first
you will just be guessing, but after many cases your accuracy will
improve.

Just as with real symptoms and real diseases, any particular
symptom might not be a perfect predictor of the diseases. For
example, a fever might indicate a flu, but might instead indicate a
bacterial infection. The symptoms in this experiment will merely
tend to indicate particular dise€ases. You cannot always be correct,
but you can learn the tendencies and get up to 70% correct.

If any of the instructions on this screen are unclear, please
re-read them now. Otherwise, press the space bar to continue.

Instead of real symptoms, such as ‘sore throat’ or ‘head ache,’
you will be shown simple words such as ‘code’ or ‘fable.” Words
that represent especially severe or critical symptoms will be
presented in all capitals with asterisks, like this:
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*IMPORTANT*

Words that represent moderate or standard symptoms will be
presented in initial capitals, like this:

Moderate

Words that represent unimportant, inconsequential symptoms will
be presented in all lowercase letters, like this:

inconsequential

[Press the space bar to continue.]

It will be faster and easier to learn the diseases if you try to create
a visual image of the symptom words. Thus, for each symptom
word, try to imagine what the word refers to, as you are learning the
correct disease. For example, if you see the symptom word ‘fable’
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with disease A, try to imagine or visualize a fable as you associate it
with A.

To reiterate, your task is to learn which symptoms tend to go
with which diseases, so that you can make as many correct
diagnoses as possible. Important symptom words are shown like
this: *IMPORTANT*, moderate symptom words are shown like
this: Moderate, and unimportant symptom words are shown like
this: inconsequential. Because the symptoms are not perfect
indicators of the diseases, you cannot make correct responses for
every case, but if you keep trying to learn which diseases tend to be
indicated by which symptoms, you can get up to 70% correct.

[Press the space bar to continue. ]

If you have any questions, please ask now. WAIT for the
experimenter to close the cubicle curtain and leave the room. Press
the space bar to begin the experiment.

Appendix B

Derivation of Formula for Attention Shift

In this Appendix, we derive the formula for rapid shifting of
attentional gains, presented as Equation 7 in the main text. The
formula expresses the change in the gain on Dimension A as
gradient descent on error with respect to that attentional gain; that
is, Ayy = —\,0E/dvy,4, where A, is a constant of proportionality.

We denote the vector of category node activations by a® =
[...,ad, .. .J" Similarly, the vectors of exemplar node activations
and of attention node activations are denoted by a* = [...,
a, .. and o =[...,a...], respectively.

By the chain rule of vector calculus,

oE dOE da*¥ ga® Ja

6‘y A dace oas* aaatt a-yA

={... —(tk——azat ,,,] . ij

X - a;x(_c)o'i|¢ji —ap| o/, |,

where
P
(E exp ('yj)P) exp (Ya)xy
J
oo p
—_ 1 WP)-1 \P
A exp (v) P (E exp (Y,-)P)/ / ( g exp (;) )
- F]

X Pexp (v,)" " exp (v,)
= Kkyuoty — o050,

Combining these expressions yields Equation 7 in the main text.
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